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ABSTRACT: We consider type II superstrings on AdS backgrounds with Ramond-Ramond
flux in various dimensions. We realize the backgrounds as supercosets and analyze explic-
itly two classes of models: non-critical superstrings on AdSsq and critical superstrings on
AdS), x SP x CY. We work both in the Green-Schwarz and in the pure spinor formalisms.
We construct a one-parameter family of flat currents (a Lax connection), leading to an infi-
nite number of conserved non-local charges, which imply the classical integrability of both
sigma-models. In the pure spinor formulation, we use the BRST symmetry to prove the
quantum integrability of the sigma-model. We discuss how classical k-symmetry implies
one-loop conformal invariance. We consider the addition of space-filling D-branes to the
pure spinor formalism.
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1. Introduction and summary

Superstring theory on AdS backgrounds with Ramond-Ramond flux has not been quan-
tized yet. The Green-Schwarz sigma-model on such backgrounds is an interacting two-
dimensional conformal field theory. In the case of the type IIB superstring on AdSs x S° [l
the authors of [ showed that the sigma-model is invariant under a Yangian symmetry al-
gebra and as a result is classically integrable. Their result relies on the realization of the
background as a supercoset G/H, where G is a supergroup with a Z4 automorphism group
and H is the Z4 fixed locus bosonic subgroup of G. Once uncovering this hidden symme-
try, one can ask whether the Yangian algebra, derived for the AdSs x S® background, is a
general feature of superstrings on AdS backgrounds with RR flux.

We will address this question by looking at superstring theories on such backgrounds,
both in the Green-Schwarz and the pure spinor formalisms. We will first construct sigma-
model actions and find simple actions for the Green-Schwarz and the pure spinor super-
strings, which hold in all dimensions. We will then show classical integrability of both
sigma-models as well as quantum integrability of the pure spinor one.!

In general for the GS superstring, it is difficult to analyze the quantum sigma-model.
This is because the quantization of the GS superstring is known only in the light-cone
gauge and hence non-covariantly. Since the equations of motion of the GS superstring do
not provide a propagator for the #’s, the calculations in worldsheet perturbation theory
are problematic. On the other hand, the pure spinor sigma-model can be quantized in
a straightforward manner, since it contains additional terms that break explicitly the GS
rk-symmetry and introduce propagators for all the variables. Hence, we will be able to show
that our models are gauge invariant and BRST invariant at all orders in the worldsheet
perturbation theory using the methods of [L]].

We will consider explicitly two classes of models: Type II non-critical superstrings on
AdS5q, for d = 1,2, 3, and Type II critical superstrings on AdS, x SP x C'Y5_,, for p = 2, 3.

The first class of models are strongly coupled two-dimensional CFTs. The sigma-model
coupling, given by the curvature of AdS, is fixed to a finite value of order one in string
units, and the theory cannot be analyzed perturbatively. The worldsheet variables for the
non-critical superstrings and in particular their pure spinor spaces have been derived in [@]

by mapping the RNS formulation of the linear dilaton background to the covariant one.?

'Recently, these kinds of supercoset sigma-models have received attention regarding their integrability
properties, see for example [E,H]

2See also [@] for the hybrid formulation of the linear dilaton background and [E,@ about lower-
dimensional pure spinor superstrings.



In the second class of models, the sigma-model will describe the non-compact part
AdS, x SP of critical superstrings on ten-dimensional backgrounds. Unlike the previous
non-critical string case, the curvature of AdS is a modulus. Thus, one can take the limit
in which the curvature is small and the sigma-model is weakly coupled and can be studied
perturbatively.

All our models are realized as nonlinear sigma-models on supercosets G/H, where the
supergroup G has a Z4 automorphism, whose invariant locus is H. A crucial property of
sigma-models on such supercosets is their classical integrability. In order to exhibit the
integrability of the sigma-models, we have to construct an infinite number of conserved
charges [f], f]. Furthermore, for the charges to be physical they have to be s-invariant and
BRST invariant in the Green-Schwarz and in the pure spinor formalisms, respectively. The
first step in the construction of the charges is to find a one-parameter family of currents
a(p) satisfying the flatness condition

da(p) + a(u) A a(p) = 0. (L1)

One then constructs the Wilson line

Y,t)

(x,t)
Uiy (z,t;5y,t) = Pexp <—/( a(,u)) , (1.2)

and obtains the infinite set of non-local charges @,, by expanding

Uy (00, t; —00,t) = 1 + Z,u"Qn . (1.3)

n=1

The conservation of @Q,, is implied by the flatness of a(u) (provided a(p) vanishes at +00).3
This is valid for a sigma model on a plane. In the closed string case, we need to impose
periodic boundary conditions and hence consider a slightly different invariant — the trace
of the Wilson loop.

The first two charges Q1 and ()2 generate the Yangian algebra, which is a symmetry
algebra underlying the type Il superstrings propagating on the AdS backgrounds with
Ramond-Ramond fluxes in various dimensions. Moreover, in the pure spinor formalism
one can see that this symmetry holds also at the quantum sigma-model level. This has
been shown by Berkovits in the AdSs x S® background in [[0]. We will show that quantum
integrability of the pure spinor action holds also in the lower-dimensional cases. In the case
of type IIB superstrings propagating on AdSs x S°, a similar Yangian algebra has been
identified in the free field theory limit of A" = 4 SYM at large N. [[[7]. We expect that a
similar structure underlies the field theory duals in various dimensions.

Note, that the Yangian algebra suggests the existence of an affine Kac-Moody alge-
bra [[[§]. This is to be contrasted with NS-NS backgrounds, where the affine algebra comes
in two copies, one left- and one right-moving, while in the case of RR backgrounds there

3Establishing the existence of the Lax connection ) is the first step towards the solution of the
nonlinear sigma-model. In particular, this technique has been fully exploited in [@] to find the classical
spectrum of the GS type IIB superstring on AdSs x S°.



would be only a single copy of such an algebra. The question arises whether this symmetry
is sufficient for solving for the spectrum of the superstring.

The paper is organized as follows. Throughout most of the paper, we analyze in
general the structure of superstrings sigma-models on supercosets with Z, automorphisms.
As we will see, most of their properties are algebraic and do not rely on the particular
choice of the supercoset. In section 2 we introduce the classical k-invariant Green-Schwarz
sigma-model and find a one-parameter family of flat currents (Lax connection). This leads
to an infinite number of conserved non-local charges and shows classical integrability of
the sigma-model. In section 3 we introduce the pure spinor action and compute the one-
parameter family of flat currents, which is different from the GS one. We describe also the
various pure spinor spaces that we use in the various dimensions. At the end of the section,
we discuss the addition of open string boundary conditions to the pure spinor sigma-model.
In section 4, we study the pure spinor sigma-model at the quantum level and show that it is
gauge invariant and BRST invariant at all orders in perturbation theory and argue that for
AdS5 these properties hold non-perturbatively as well. By using BRST symmetry, we then
prove quantum integrability. In section 5, we study one-loop conformal invariance of the
GS sigma-model and then describe the various specific backgrounds and their supercoset
realizations in section 6. In appendices A and B we collected some technical details of the
GS and pure spinor computations, while in appendix C we describe the various supergroups
and their notations. In appendix D we review the supergravity solution of non-critical
AdS;5 x St of [[9] and find a curious result about the higher curvature corrections to this
solution.

2. Integrability of Green-Schwarz superstrings on RR backgrounds

In this section we will consider the integrability properties of Green-Schwarz superstrings
on the background of a supercoset G/H with only RR-flux, where G is a supergroup with
a Z4 automorphism whose invariant locus is the subgroup H. We will construct the Green-
Schwarz action and derive the family of flat connections leading to an infinite number of

4 The k-invariance of the currents in the GS formalism will

conserved non-local charges.
follow from the BRST invariance of the non-local currents in the pure spinor formalism
that we will prove in the next section as explained in [2]. The notations about supergroups
are summarized in the appendix. The discussion in this section will be at a formal level,

while we will specialize to the particular backgrounds in sections | and [,

2.1 The Green-Schwarz sigma-model

We will be interested in sigma-models whose target space is the coset G/H, where G is
a supergroup with a Z4 automorphism and the subgroup H is the invariant locus of this
automorphism. The super Lie algebra G of G can be decomposed into the Z4 automorphism
invariant spaces G = Hg ® H1 & Ha @ Hs, where the subscript keeps track of the Z4 charge

4Qur construction will be covariant. In the case of AdSs x S5, it has been shown in [@] that the Green-

Schwarz sigma-model is still integrable after gauge fixing of k-symmetry and reparametrization invariance.



and in particular Hy is the algebra of the subgroup H. This decomposition satisfies the
algebra (i =1,...,3)

[Ho,Ho] € Ho, [Ho,Hi] CHi, [Hi,Hj] C Hitj mod 4- (2.1)
and the only non-vanishing supertraces® are
(HiH;) #0, i+j=0mod 4 (i,7=0,...,3). (2.2)

We will denote the bosonic generators in G by Tj. € Ho, T € Ha, and the fermionic ones
by T, € H1, T4 € Hs.

The worldsheet fields are the maps g : ¥ — G and dividing by the subgroup H is done
by gauging the subgroup H acting from the right by g ~ gh, h € H. The sigma-model
is further constrained by the requirement that it be invariant under the global symmetry
g — g9, § € G. The left-invariant current is defined as

J =g dg, (2:3)
which satisfies the Maurer-Cartan equation
dJ+JANJ=0. (2.4)

This current can be decomposed according to the Z4 grading of the algebra J = Jy + J1 +
Jo 4+ J3 and the Maurer-Cartan equation splits into

AdJo+JoNJo+ A AT+ Jo Ado+ Js AJy =0,
A+ JoNJL+ I AJo+Jo ANJs+ Js A Jy =0,
dls+Jo Ao+ LA JL+ o Ado+ Js A Js =0,
dJs+ JoNJs+ LA Jo+ Jo AT+ J5AJg =0 .

~— ~— ~— —

(2.5
(2.6
(2.7
(2.8
These currents are manifestly invariant under the global symmetry, which acts by left
multiplication. Under the gauge transformation, which acts by right multiplication, they

transform as

§J=dA+[J,A], AeHp. (2.9)

Using the above properties of the algebra G and the requirement of gauge invariance
leads to the GS action (in the following we will use J; both to denote the 1-form currents
in the target space as well as their pullback to the worldsheet)

1 1
Sas = Z /<J2 AxJy 4+ J1 A J3> = Z /d20<\/ﬁhmn<]2m<]2n + eanlmJ3n> R (210)

where m,n = 1,2 are worldsheet indices. A JyA*Jy term does not appear because of gauge
invariance, while the term Jj A xJ3 breaks k-symmetry and therefore cannot be included

A B
C D
where degM is 0 for Grassmann even matrices and 1 for Grassmann odd ones.

"The supertrace of a supermatrix M = is defined as (M) = StrM = trA — (=1)%sM D,



in the GS action. The first and second terms in the action are the kinetic and Wess-
Zumino terms, respectively. The coefficient of the Wess-Zumino term is determined using
k-symmetry as shown in the next paragraph. For a particular choice of the supergroup,
this GS action reproduces the GS action on AdSs background constructed in [2g] and the
GS action on AdSs x S° [fl].

Let us verify now that the action is indeed invariant under x-symmetry. It is convenient
to parameterize the k-transformation by [fl]

6 = 0 XM I (2.11)

where the index M runs over the target superspace indices and XM are the superspace
coordinates, while i = 1, ..., 3 denotes the Z, grading. Since J; = dX™ J;p; we obtain the
following transformations of the currents

OrJ2 = dbxxa + [Jo, 0xTa] + [J2, 6xT0] + [J1, 6xw1] + [J3, O3], (2.12)
01 = dbpx1 + [Jo,0xw1] + [J1, 0o + [, 03] + [J3, 6x2] (2.13)
drdo = déxzo + [Jo, 0xxo] + [J1, 0ps] + [J2, 0] + [J3, 0x21] (2.14)
Ond3 = doxxs + [Jo, dxxs] + [J1, Oxxa] + [Jo, dxx1] + [J3, dkxo] (2.15)

Using these transformations and taking into account the Maurer-Cartan equations, the
k-transformation of the actions is

1
6RSGS = 1/ < mna (J?m kL1 — Jln(;nx?;) + 5/{(\/ﬁhmn)<]2m<]2n +

+ Qﬁhmn(JQmanéan + [J2m7 JOn](Sme) + fmn([t]lma Jln] - [J3m7 J?m])(san -
— 2(VRR™™ 4 €™ [ 1, Jom]0kx1 + 2(VARTT — €M) o, Jan)0exs) . (2.16)

The x-transformation is parameterized by
(5H$2 == 0, 5H$1 = [JQm, I{gb] 5 5/£$3 = [JQm, K{n] 5 (217)

where k5" € ‘H3 and <" € H;. By substituting this and expressing the result in terms of
the structure constants and the Cartan metric ) one finally has

1
8,.5Gs = 1 / d2a[emn<am(J3n5Km1 — Jinbe3)) + 6, (VAR ey IS JE +
+4\/_(P-Tn7755faafba i pa _Pmnngﬁffafba JS pa)JZmJQp] (2'18)

where we have defined the projectors PP = 1(hmn + ﬁem"). Since 8, (v/hh™") should

be symmetric and traceless and not Lie-algebra valued, we have to require that

Mo (Snton + fiid i) = Coarias (2.19)
for some matrix c,4. Then one obtains

S (VRR™™) = 4V heaa (PP JG K1Y — PP IR k5Y) (2.20)



which is automatically symmetric in @ and b if we require that
k' =Pk, , K3 = P!"ks, (2.21)

since Py P = PP Tt is also traceless because Pk, = P™kg, = 0.

The relation (R.19), required for x-symmetry, is a condition on the structure constants
of the supergroup. This condition is equivalent to the torsion constraints of type II su-
pergravity in various dimensions.® In ten dimensions, by requiring s-symmetry of the
GS action one finds the constraints of ten-dimensional supergravity. In the non-critical
superstring, we get for backgrounds of this type one of the supergravity constraints. In
appendix [A], we work out the relation between (P.19) and the torsion constraints.

2.2 Classical integrability of the Green-Schwarz sigma-model

In the following we construct a one-parameter family of flat currents (2:27), (R.29) that
imply the existence of an infinite number of conserved non-local charges, thus showing that
the GS sigma-model is classically integrable. The k-invariance of these currents will not be
checked, but it should follow from the BRST invariance of the corresponding pure-spinor
currents shown in appendix B.2.

The equation of motion and constraints for the currents that follow from the ac-

tion (R.1() read

d¥Jo = —JgANxJy —xJo AN Jg+ 1 ANJp — J3 A J3, (2.22)
0= AT+ AT+ xJ1 ANy + Jo A xJq, (2.23)
0=JANJ3+J3ANJo—Jo Axdsg —xJ3 A Jo, . (2.24)

We are looking for a one parameter family of flat connections D = d + a(u), satisfying
the zero curvature condition D? = 0 or in other words

da(p) + a() A a(p) = 0, (2.25)

where the right-invariant current a(u) is usually referred to as the Lax connection and p
as the spectral parameter. In order to facilitate the comparison with the pure spinor flat
current, we will switch to the left-invariant current A = g~ 'ag which satisfies the equation

dA+ANA+TANA+ANT =0 (2.26)

Following [B] we will consider a current composed of the currents for which the exterior
derivative is known:

A=alJy+ Bxdy+vJ1 +0J3 . (2.27)

5By “type II” supergravity in dimension D we mean a theory with as many gravitini as the ones we
would get by compactifying ten-dimensional type II supergravity on a Calabi-Yau of real dimension 10 — D.



Substituting this in (2.26) and using the equation of motion, the constraints and the

Maurer-Cartan equations yields the equations”

B—a+y*+2y=0, —a—[+4+64+20=0,
—v+(a=B)0+a—-p+6=0, —d+(a+p)y+a+B+y=0,
a2 -3 +2a =0, Y+y+6=0, (2.28)

whose two one-parameter families of solutions are

a = 2sinh?p, B =2sinhpcoshpy, ~v=—(1+e*), d=—(1+¢e"),
a = 2sinh?p, [ = —2sinhpcoshp, ~v=et—1, bd=eHt—-1, (2.29)

where —oo < p < 0.

For the second family, an infinite set of conserved charges can be obtained using the
expansion of the solution about u =0

. . . ) 1. 1.
a=u(j — js — 2%j2) + pi* (2]2 + 501 + 5]3) + 0, (2.30)

where the j; denote the right-invariant currents g.J;g~'. We can then introduce the mon-
odromy matrix, which is the Wilson line of the flat connection

Uc =Pexp <— /Ca> =1+ Zu"@n, (2.31)
n=1

whose expansion around p = 0 leads to the conserved charges Q,,. The first two conserved

charges are®

Q1 = —/C(jl — j3 — 2%j2), (2.32)
Qs = — /C <2j2+%j1+%j3> T /C 1 (&) — Ga(z) — 2xja(x)] / " — s — 24). (2.33)

The former is local and is expected to be one of the Noether currents of the sigma-model.
The latter is non-local. The other charges can be generated by repetitive Poisson brackets
of Q2 and together they form a classical Yangian. The Lax connection is the starting point
for the solution of the classical sigma-model (see e.g. [[[q]).

We will not argue that the integrability property is preserved at the quantum level.
This will be shown in the pure spinor formalism.

"Our currents are related to the currents in [E] by p = —j2, ¢ = —(j1 + j3) and ¢’ = j1 — j3 so these
equations are related to the ones in by a = —a, = 75, v = 5— Fand § = —(7 + g), where the tilded
variables refer to the same untilded variables in [E}

8In the notation of [E] the integrand of )1 is proportial the Noether current p + %*q/.



3. Integrability of pure spinor superstrings on RR backgrounds

In this section we will consider pure spinor superstrings on coset super-manifolds G/H,
where the supergroup G possesses a Z4 automorphism whose invariant locus is the subgroup
H. The cosets we will consider will be limited to backgrounds which have only RR-flux. We
will first discuss the various pure spinor spaces in the different spacetime dimensions, then
construct the BRST invariant pure spinor action and the infinite set of BRST invariant non-
local charges, hence exhibiting the classical integrability of the pure spinor superstrings. In
the following section we will prove that these pure spinor superstrings are also integrable at
the quantum level. Towards the end of the section we will discuss the inclusion of D-branes
in the pure spinor superstrings.

The pure spinor formalism for the ten-dimensional superstring 9] has been well es-
tablished. In lower dimensions, there have been different interpretations of the pure spinor
superstring action. In some cases it has been argued that it describes the non-critical su-
perstring [LT], in other cases it has been argued to describe the non-compact sector of a
ten-dimensional superstring compactified on a CY manifold P4, [[4, [[J). In this section,
we will focus on the algebraic properties of the pure spinor formulation of the superstring
of a supercoset sigma-model.

3.1 Pure spinor spaces in two, four and six dimensions

In this subsection we will present the definition of the pure spinor spaces in lower-dimen-
sional superstrings. The definition of the pure spinors that Cartan and Chevalley give in
even dimension d = 2n is that Ag™!"™i X\ = 0 for j < n, so that the pure spinor bilinear

reads [2F, 4)°

1
AN = ——o0f (AN, (3.1)

where ¢ ™ is the antisymmetrized product of j Pauli matrices. This definition of the
pure spinor space in d = 2,4,6 dimensions is trivially realized by an SO(d) Weyl spinor.

In all our cases the lower-dimensional pure spinors will be Weyl spinors. In some cases
we will need more than just one pure spinor to construct a consistent string theory. In
particular, our pure spinor spaces are dictated by the realization of the supersymmetry
algebra for the type II superstring.!? Indeed, we will use the same pure spinor spaces in
2p dimensions to describe the ghost sector of both the non-compact sector of the type II
superstring on AdS, x SP x C'Ys_, and of the 2p dimensional non-critical type II super-
string. These latter models have been introduced in [[L1], where a field redefinition has
been constructed that maps the RNS formulation to the pure spinor formulation of the
non-critical superstring in the linear dilaton backgrounds. The crucial feature of these
lower-dimensional pure spinor spaces is that, like in the ten-dimensional case, the product
of two pure spinors is still proportional to the middle dimensional form, according to B.1l
Let us discuss the various dimensions in detail.

9See also @] .

0These lower dimensional pure spinors spaces have been introduced in [Q, E, @], in the context of the

Calabi-Yau compactification of the ten-dimensional pure spinor superstring.



Two-dimensional superstring

The left moving sector of Type II superstrings in two dimensions realizes N' = (2,0)
spacetime supersymmetry with 2 real supercharges @), both of which are spacetime MW
spinors of the same chirality, which are related by an SO(2) R-symmetry transformation («
is not a spinor index in this case, but just enumerates supercharges of the same chirality).
The corresponding superderivatives are denoted by D,. The supersymmetry algebra reads

{Do, Dg} = =003 P,

where P* are the holomorphic (antiholomorphic) spacetime direction of AdS,. The pure
spinors are defined such that A\*D,, is nilpotent, so that the pure spinor condition in two
dimensions reads

AN%5,5 =0, (3.2)
which is solved by one Weyl spinor. The pure spinor bilinear reads
(6% 1 Q, a
AN = (1) (NIT55A), (3.3)

where the index a takes the values 1,3. In two dimensions the off-diagonal blocks of the
gamma matrices are one dimensional matrices, so the relation (B-]) still holds.!!
Four-dimensional superstring

In four dimensions, the left moving sector of the type II superstring realizes N' = 1 super-
symmetry, which in terms of the superderivatives D4 in the Dirac form reads

{Da,Dg} = —2(CT™) Py, (3.4)

where C is the charge conjugation matrix and A = 1,...,4. Requiring nilpotence of A4 D4
specifies the four-dimensional pure spinor constraint

M(CT™) 4pA\P = 0. (3.5)

If we expand the pure spinor bilinear in terms of the four dimensional gamma matrices we
find then AMAP = 1(CT,,,) A8 (ACT™X). Sometimes it will be convenient to use the Weyl
notation for the spinors, under which the pure spinor is represented by a pair of Weyl and
anti-Weyl spinors (A%, \%), subject to the constraint

ANY = 0. (3.6)
The pure spinor bilinear then reads
1 cs 1o
AN = gaﬁ‘fn()\am")\), AN = gagfn(Aam"A), (3.7)

HThe notations here are slightly different from the ones in @] In particular, if we denote by ¥ the pure
spinor in that paper, we have A\! = %(Al +iX?) and \? = %()\1 —i)?). Anyway, the pure spinor space is
identical to the one considered there.

,10,



Six-dimensional superstring

In six dimensions, the left moving sector of the type II superstring realizes N' = (1,0)
supersymmetry, with eight real supercharges. Naively, one would expect that one super-
charge @, in the 4 of SO(6) could do the job. However, due to CPT invariance and the
pseudo-reality of the Weyl irrep, it is impossible to realizes the supersymmetry algebra
with just one copy of supercharges'? and we have to introduce two supercharges @, in the
4 of SO(6), which form a doublet of an auxiliary SU(2) outer automorphism. In terms of
the superderivatives D! the supersymmetry algebra reads

{D.,, D)} = €907 P, (3.8)

where €% is the invariant tensor of SU(2). It is clear now that the six-dimensional pure
spinor consists of a Weyl spinor A which is also a doublet with respect to the auxiliary
SU(2). If we demand the nilpotence of A* D!, we then find the pure spinor constraint

€I TN = 0. (3.9)

If we expand the symmetric bispinor constructed out of a pure spinor bilinear, using rep-
resentation theory we find once again that only the middle-dimensional form is present

1 b
aN! = %agﬁmag (AT ), (3.10)

where Jgjb is the two by two SU(2) generator in the fundamental representation, given by
the antisymmetrized product of two SU(2) Pauli matrices.

3.2 The pure spinor sigma-model

The worldsheet action in the pure spinor formulation of the superstring consists of a matter
and a ghost sector. The worldsheet metric is in the conformal gauge and there are no
reparameterization ghosts. The matter fields are written in terms of the left-invariant
currents J = ¢ 'dg, J = g '0g, where g : ¥ — G, and decomposed according to the
invariant spaces of the Z4 automorphism:

J=Jo+ 1+ o+ J;3 (3.11)

and similarly for the anti-holomorphic component .J, where the notations are the same as
in section 2. The Lie algebra-valued pure spinor fields and their conjugate momenta are
defined as in [[[{]

A=XTy, w=wan®Ts, A=XTs, @=wgnT,, (3.12)

where we decomposed the fermionic generators 1" of the super Lie algebra G according to
their Z4 gradings T,, € H1 and T; € Hs and used the inverse of the Cartan metric 770‘5‘. The

12A simple manifestation of this fact is the following. The six-dimensional Pauli matrices o4 are four
by four antisymmetric matrices. Therefore the naive supersymmetry algebra {Qa,Qs} = 043 Pm does not
make sense in six dimensions.

— 11 -



spinor indices here are just a reminder, the unhatted ones refer to left moving quantities,
the hatted ones to right moving ones. The choice of spinor representations depends on
the particular supercoset in discussion and will be explained in section ] for each specific
model. Using these conventions, the pure spinor currents are defined by

N =—{w,\}, N=—{w,A\}, (3.13)

which generate in the pure spinor variables the Lorentz transformations that correspond to
left-multiplication by elements of H. N, N € Hy so they indeed act on the tangent-space
indices o and & of the pure spinor variables as the Lorentz transformation. The pure spinor
constraint reads

{NA} =0, {IMA}=0. (3.14)

The sigma-model should be invariant under the global transformation ég = ¥g, ¥ € G.
J and J are invariant under this global symmetry. The sigma-model should also be invariant
under the gauge transformation

Sad = ON+[J,A], 6aJ =0A+[J,A] SaA=[\A], Saw=[w,A],
AN = [\ A, Saw = [w, A], (3.15)

where A € Hg. The most general sigma-model with these properties is
S = /d2Z<OcJ2j2 + ﬂJljg + ")/Jgjl + WO 4+ WO + Njo + NJO + CLN]\_[> , (3.16)

where «, 3,7, a are numerical coefficients that we will shortly determine.

The accompanying BRST operator is (see appendix [B.1])

QB = %(dz)\Jg + d?j\jﬁ ) (3.17)

which generates the following BRST transformations

5BJj = 5j+3,08(6)\) + [Jj+3, 6)\] + 5j+1,08(6)\) + [Jj+1, 65\], (3.18)
6BJ; = 0j4300(eX) + [Jj13, €Al + 651,00(eX) + [Jj41, €A,
dpw = —J3e€, dpw = —jle,

6BN = [J3,€)\], 5BN: [jl,ej\].

The coefficients of the various terms in the action are determined by requiring that the
action be BRST invariant (the details can be found in appendix B.1)). The BRST-invariant
sigma-model thus obtained is

1. - 1. - 3. - = - - _ _
S = /dzz <§J2J2 + ZJng + ZJng + wIN 4+ wWON+ NJg+ NJy — NN> (3.19)

for all dimensions and this of course matches the critical AdSs x S° considered in [L{] as
well.
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Let us briefly comment on the relation between the pure spinor action (B.19) and the
GS action (R.10)). The latter, when written in conformal gauge, reads

1. - 1. - 1. -
Sas = /d22<§J2J2 + ZJlJB — ZJ3J1> . (3.20)

To this one has to add a term which breaks x-symmetry and adds kinetic terms for the
target-space fermions and coupling to the RR-flux P®¢

S, = /sz(dajf‘ + da JS + Po%dydgy) = /d%(di —dJ3 +dd)y, (3.21)

where, in curved backgrounds, the d’s are the conjugate variables to the superspace coor-
dinates @’s. After integrating out d and d we get the complete matter part

1. - 1. - 3. -
Sas + Sk = /d22<§J2J2 + ZJng + ZJ3J1> . (3.22)

This sigma-model can be recognized as taking the same form as the sigma-model used
in [Rg] for the compactification of type II superstring on AdSs x S? x CY3 in the hybrid
formalism. It is a general fact that the matter part of the hybrid and the pure spinor
formalism is the same. As usual this has to be supplemented with kinetic terms for the
pure spinors and their coupling to the background

Sy = / @2z (wdA +@ON+ NJy + NJy — NN) (3.23)
in order to obtain the full superstring sigma-model (B.19) with action S = Sgg + S, + Syh-

3.3 Classical integrability of the pure spinor sigma-model

In this subsection we will demonstrate the classical integrability of the action (B.19). For
finding the equations of motion and the flat currents we follow the method of [B(]. Here, one
has to distinguish between two cases — a non-Abelian gauge symmetry H and an Abelian
one, which occurs only in the two-dimensional non-critical superstrings. We begin with the
non-Abelian case and then discuss the differences when the gauge group is Abelian.

The equations of motion of the currents J; are obtained by considering the variation
dg = gX under which §J = 90X + [J, X] and using the Z4 grading and the Maurer-Cartan
equations, so that we get

Vs = —[J1, Jo] — [Jo, Ji] + [N, Js] + [N, J3], (3.24)
VJ3 = [N, J3] + [N, J3], (3.25)
VJy = —[J1, 1] + [N, Jo] + [N, Jo] , (3.26)
ViJy = [J3,J3] + [N, o] + [N, Jo], (3.27)
VJi = [N, Ji] + [N, Ji], (3.28)
VJy = [J2, 3] + [J3, Jo] + [N, J1] + [N, Ji], (3.29)
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where VJ = 0J + [Jo,J] and VJ = dJ + [Jo, J| are the gauge covariant derivatives. The
equations of motion of the pure spinors and the pure spinor gauge currents are

VA =[N, ), VA=[N,), (3.30)
VN = —[N,N], VN =|[N,N]. (3.31)

As in the previous section on the GS formalism, we are looking for a one-parameter
family of right-invariant flat currents a(u). The left-invariant current A = g~ 'ag con-

structed from the flat current a satisfies the equation

3
VA-VA+[A A+ ([ Al +[A J;]) =0. (3.32)

A and A can depend on all the currents for which there are equations of motion so
A=coJo+c1J1 +c3J3+cenN, A:Egjg—i-éljl —i—égjg—i-ENN . (3.33)
By requiring the coefficients of the currents to satisfy (B.33) one obtains the equations

—CG+cci+e+a=0, —G+cia+ca+ca=0 —c3+caci+c1+c2=0,
—cy+c3c3+c3+c3=0 —ci+ci3+c3+ce=0, —ci+c3ta+Cc2+c3=0,
cit—c1+enci+ey=0, ¢ —cp—cien—cny=0, ca—cp+enca+eny=0,
Co—co—cocy —cny =0 cg—c3+cencs+cey=0, c3 —c3—c3cy —cy =0,

CaCy +Co+ca =0, c1¢3+¢3+c1 =0, e3¢+ ¢ +c3=0,

cN +cny+ceney =0, (3.34)

whose solutions can be written as

=pt=1, a=+pY? -1, g=4p?-1, G=p-1,

o=+ -1, G=+p?-1, ey=p2-1, in=p>—1. (3.35)

Hence, there exists a one-parameter set of flat currents.

The flat currents are given by the right-invariant versions a = gAg~! and @ = gAg~*

of the currents A and A found above. The conserved charges are given by

Uc =Pexp [— /C (dza + dza)] . (3.36)

These charges should be BRST-closed in order to represent physical symmetries. In ap-
pendix [B.9 it is shown that these charges are indeed BRST invariant.

The construction of the flat currents in the case of an Abelian gauge group is very
similar with some differences we will now discuss. The equations of the pure spinor gauge
generators (B.31]) degenerate in the Abelian case into the equations

ON=0, ON=0. (3.37)
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As a result, the last equation in (B.34) drops. However, the solution (B.3§) remains valid.
The proof of the classical BRST invariance of these charges is identical to the one in the
non-Abelian case.

The first two conserved charges can be obtained by expanding = 1 + € about € = 0.
To simplify the notation we will consider the right invariant currents

ji=ghigt, ji=gligt, n=gNg ', n=gNg'. (3.38)

Using the expansion in € one gets

1. . 3. 3. . 15,
a=— <531 +j2+ s+ 2n> €+ (531 2+ s+ 3n> +0(%),  (3.39)

a = (531 +J2 + 573 + 2n> €+ <§]1 g3 + n) € +0(e), (3.40)

whose substitution in (B.36) and using Uc =1+ 2| €"Q, yields

Q2

1. ) 3.
dz <§J1 + 2+ 373 + 2n>

1. ) 3. (3= - 1- _
Q1=/ dz | zj1+je+zjz+2n) —dz | i +j+z3+20 )], (3.41)
o 2 2 2 2
3- - 1-
—d2<—j1+j2+—j3+2ﬁ>
(2,2) 2 2

—/ dz (25 + 7 +§' +3n | +dz Ly +n |+
o 8]1 J2 8]3 8]1 8]3
]X
(2,2)
(=!,2")

/
C
. (3.42)
(2/72/)

(2,2) (1 ' 3
X / dz (‘Jl +Jj2+ 5Js + 2n>
o 2 2
The first charge @)1 is the local Noether charge. The rest of the conserved charges, which

37. 7. ]‘7. —_
—dz? <§]1 2+ ozt 2n>

form the Yangian algebra, can be obtained by repetitive commutators of QQs.

3.4 Adding D-branes to the pure spinor superstrings

In this section we will consider the addition of D-branes to the coset space background. For
this purpose we consider the implications of adding boundaries to the worldsheet (adding
D-branes in the pure spinor formalism is treated in [B1], BJ]) and requiring the appropriate
boundary conditions.

The contribution of the boundary to the variation dg = gX of the pure spinor action
is

Loz, =3 [ 3. 1
=1 > _ X - _ _ X . 1 X
0S5 Zjéaz <<4dzJ3 4dzJ3> 1+ 2(dzJ2 dzJ2) Xo + <4dzJ1 4dzJ1> 3+
+dzZwoN\ — dzwé)\> +..., (3.43)

where X has been decomposed into its Z4 invariant components X; and the ... are the
worldsheet bulk terms. We will consider the worldsheet as the upper-half complex plane
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so the boundary is given by z = Z. The boundary conditions that follow are

J2‘ = jz‘ ,
% o%.

Jl‘ —3J;

J3‘az :3J3‘ s

. Wl = —wadNY| . (3.44)
[9))) [9)))

oy’ ‘az

An additional constraint comes from requiring the action to be BRST invariant. The BRST
variation of the action is

555 = - 7§ (d2e(\Ts — A1) — dze(MT1 — M) | (3.45)
ox
which after substituting (B.44)) takes the form
oS = Z% (dZEjB — d?ejg) , (3.46)
o))

so we have to require in addition jp = jg on the boundary.

We may solve the pure spinor boundary conditions by

(A\Y — R*40%) e =0 (wa + Ro“g) U (3.47)
in which the matrix R,® determines the type of D-brane and R,%R" 5= 5;‘ The BRST
boundary condition then becomes

(I = R gnaan®® 13| =0 (3.48)

This condition can also be obtained by requiring that the boundary condition involving w
and w be BRST invariant.

The matrix R is to be determined by the symmetries that the D-brane configuration
breaks. However, since the boundary conditions for the matter fields (B.44)) involve only
left-invariant currents, they alone are not sufficient in order to break some of the sym-
metries. In order to gain such information it is probably necessary to resort to a specific
parameterization of the super-Lie manifold G and the gauged subgroup H.

4. Quantum consistency of the pure spinor sigma-model

In this section we will show that the pure spinor superstring on the supercoset backgrounds
in various dimensions is gauge invariant and BRST invariant to all orders in the sigma-
model perturbation theory. Then, we will show that the infinite set of nonlocal charges,
which are classically conserved, are also BRST invariant in the quantum theory, proving
that the integrability of the superstring holds quantum mechanically as well.

Since our backgrounds are realized in terms of supercosets with a Z4 automorphism,
we will be able to apply the powerful tools developed in [[l(] for the superstring on the
AdS5 x S° background. The only subtlety is related to the different definitions of the pure
spinor constraints in the lower dimensional cases.
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4.1 Quantum gauge invariance

As we discussed above, the action is classically gauge invariant under the right multipli-
cation g — gh, where h € H. We will prove that we can always add a local counterterm
such that the quantum effective action remains gauge invariant at the quantum level.!3
Quantum gauge invariance will then be used to prove BRST invariance.

An anomaly in the H gauge invariance would show up as a nonvanishing gauge variation
of the effective action dpSeg in the form of a local operator. Since there is no anomaly in
the global H invariance, the variation must vanish when the gauge parameter is constant
and, moreover, it must have grading zero. Looking at the list of our worldsheet operators,
we find that the most general form of the variation is

0Seg = /d22<01N5A + 51N8A + 202J05A + 252j06A>, (41)

where A = T; [ab]A[ab}(z,E) is the local gauge parameter and (ci,¢i,co,C2) are arbitrary
coefficients. By adding the counterterm

S, = —/d22<c1Nj0 + & NJy + (co + &) JoJo), (4.2)
we find that the total variation becomes
OA(Seft + Sc) = (c2 — ¢2) /d2z(J05A — JoOA). (4.3)
On the other hand, the consistency condition on the gauge anomaly requires that
(0A0A7 — OA1OA)Seft = O[p, A7 Seft (4.4)
which fixes the coefficients ¢ = ¢é. Therefore the action is gauge invariant quantum

mechanically.

4.2 Quantum BRST invariance

In order to prove the BRST invariance of the superstring at all orders in perturbation
theory we will adapt the proof of [I{] to our lower-dimensional cases. First, we will show
that the classical BRST charge is nilpotent. We will then prove that the effective action
can be made classically BRST invariant by adding a local counterterm, using triviality of a
classical cohomology class. Then we will prove that order by order in perturbation theory
no anomaly in the BRST invariance can appear.

As we have shown in the previous section, the action (B.19) in the pure spinor formalism
is classically BRST invariant. It is easy to prove, following the algebraic argument [[[(],
that, in all our backgrounds, the pure spinor BRST charge is classically nilpotent on the
pure spinor constraint, up to gauge invariance and the ghost equations of motion. The
second variation of the ghost currents reads indeed

QQ(N) = _[N7A] - {)‘7 Vj\ - [N7 5‘]}7
Q*(N) = —[N,A] — {\,VA—[N,\]}, (4.5)

3This proof is different from the one in . In that paper, Berkovits uses a parity symmetry argument,
while we use the consistency condition on gauge anomalies.
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for the particular gauge transformation parameterized by A = {\, A} and the equations of
motion (B.31]). Therefore the classical BRST charge is well defined.

Consider now the quantum effective action Seg. After the addition of a suitable coun-
terterm, it is gauge invariant to all orders. Moreover, the classical BRST transformations
of (B.1§) commute with the gauge transformations, since the BRST charge is gauge in-
variant. Therefore, the anomaly in the variation of the effective action, which is a local
operator, must be a gauge invariant integrated vertex operator of ghost number one

SBRSTSeft = / a2z, (4.6)

In appendix B.J we show that the cohomology of such operators is empty, namely that we
can add a local counterterm to cancel the BRST variation of the action. A crucial step in
the proof is that the symmetric bispinor, constructed with the product of two pure spinors,
is proportional to the middle dimensional form. Schematically, this means that in d = 2n
dimensions we can decompose

AN~ 2B

mi...Mn

In section B.J|, we have shown that this property is satisfied by the pure spinors in all our
backgrounds, ensuring classical BRST invariance of the effective action.

Since there are no conserved currents of ghost number two in the cohomology that
could deform @Q?, the quantum modifications to the BRST charge can be chosen such that
its nilpotence is preserved. In this case, we can set the anti-fields to zero and use algebraic
methods to extend the BRST invariance of the effective action by induction to all orders in
perturbation theory. Suppose the effective action is invariant to order h”~!. This means
that

QSet = h“/d2z<922> + O,

The quantum modified BRST operator @ = () + @y is still nilpotent up to the equations of
1)

z

) = 0. But the cohomology
(0)

2z

motion and the gauge invariance. This implies that @ [ sz(Qi

of ghost number one integrated vertex operators is empty, so QSZ) = @X.7, which implies

@ (- [ @:2)) = 000+ (4.7)

Therefore, order by order in perturbation theory it is possible to add a counterterm that
restores BRST invariance.

4.3 Quantum integrability

In this subsection we will finally show that the classically conserved nonlocal currents
of (B.39) can be made BRST invariant quantum mechanically. In this way we prove quan-
tum integrability of our type II superstring theories. The proof is essentially identical
to the one presented in [[[(]. First, we review how the absence of a certain ghost num-
ber two state from the cohomology implies the existence of an infinite number of nonlocal
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BRST invariant charges. Then we will review how this argument can be extended quantum
mechanically.

Consider the charge that generates the global symmetry with respect to the supergroup
G

q=q'Ta= /deATA, (4.8)

where j4 is the corresponding gauge invariant current. Since this is a symmetry of the
theory, the charge is BRST invariant, so we find €Qj = 0,h, where h = hAT) is a certain
operator of ghost number one and weight zero. Classical nilpotence of the BRST charge
implies moreover that Qh = 0.

Consider now the operator : {h,h} :, where : ... : denotes a BRST invariant normal
ordering prescription. If there exists a ghost number one and weight zero operator €2, such
that

QQ =:{h,h}:, (4.9)

then there is an infinite number of nonlocal charges which are classically BRST invariant.

To prove this, consider the nonlocal operator
+oo o
k=: / da/ do'[j(o),j(0")] . (4.10)

Its BRST variation is Qk = 2: fj_;o do[j(o),h(o)] :. On the other hand, the BRST trans-
formations are classically nilpotent, in fact we find Q(2 : [j(0), h(0)] :) = 05 : {h(0),h(0)} -
Now, since there is an operator € that satisfies ({.9), we have

Q(2:[j,h] : —0,Q) = 0. (4.11)

In other words, the ghost number one weight one operator 2 : [j, h] : —0, is BRST closed.
On the other hand, the BRST cohomology of ghost number one currents (’)((,1) is empty, as
we will show below. We conclude that this operator is BRST exact, namely there exists a
2 such that QX =2 [4,h] : —9,9. But then the nonlocal charge

+o0o
g:k—/ doy, (4.12)

—o
is classically BRST invariant and represent the first nonlocal charge of the Yangian. By
commuting ¢ with itself one generates the whole Yangian.
It remains to be shown that the BRST cohomology of ghost number one currents is
trivial. This cohomology, in fact, is equivalent to the cohomology of ghost number two

unintegrated vertex operators, by the usual descent relation
Q/@@Q:O:Q@D:@d% (4.13)

At ghost number two we have only two unintegrated vertex operators that transform in
the adjoint of the global supergroup G, namely

Vi =g\, Vo = gAg L (4.14)
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Their sum is BRST closed, while their difference is not. Finally, we have V; 4+ Vo = QQW)
where

Qb = ZgA+A)g7, (4.15)

so this classical cohomology class is empty.

Now, suppose that we have a BRST invariant nonlocal charge ¢ at order A"~! in
perturbation theory, namely @q = prQM) 4 O(h™+1). QW must be a ghost number one
local charge, since any anomaly must be proportional to a local operator. Nilpotence of the
quantum BRST charge @ = @ + @4 implies that QMW =0, but the classical cohomology
at ghost number one and weight one is empty, as shown above, so there exists a current
20 (0) such that Q [doX@(c) = QM. As a result Q(q — h" [ doxO) (5)) = O(h"H1).
Hence, we have shown that it is possible to modify the classically BRST invariant charges
of (B.3Y) such that they remain BRST invariant at all orders in perturbation theory.

5. One-loop conformal invariance

In this section we will give the spacetime interpretation of the various sigma-models we have
introduced in the previous sections. Some of these backgrounds describe the noncompact
part of a ten-dimensional critical superstring, while some others describe lower-dimensional
non-critical superstrings. The way we will identify the correct superstring is by looking at
the Ricci scalar of the backgrounds, which vanishes for the backgrounds being a part of a
compactification.

The coefficients of the one-loop beta-function equations for the conformal invariance of
a sigma-model on a supercoset G/H with Z, automorphism are proportional to the super
Ricci tensor of the supergroup GG. This has been shown for the matter part of the hybrid
formalism in [B3, 9 (which is identical to the matter part of the pure spinor action) and we
will show below that the same holds for the ghost part of the pure spinor action. Whenever
the supergroup G is super Ricci flat (its dual Coxeter number vanishes), the sigma-model
is automatically conformally invariant at one-loop. The supercosets describing AdS,, x S?
backgrounds are all super Ricci flat and therefore conformally invariant. Moreover, since
the AdS, and the SP part have the same radii, their scalar curvatures have equal modulus
but opposite sign and hence the total scalar curvature of the background vanishes. Since
in these backgrounds the dilaton is constant and the scalar curvature vanishes, the Weyl
anomaly also vanishes and they necessarily describe a part of a critical ten-dimensional
background. The compactified part has to be Ricci flat and preserve minimal supersym-
metry, hence a CY manifold of complex dimension 5 — p would do the job and we can
identify the full ten-dimensional background as AdS, x SP x CY5_,,.

When the supergroup G is not super Ricci flat (its dual Coxeter number is nonvanish-
ing), the GS sigma-model can be still shown to be conformal at one-loop, as first discussed
by Polyakov [B]. The intuitive reason, which we will explain below, is that classical x-
symmetry of the GS action, which is responsible for spacetime supersymmetry, is enough
to ensure one-loop conformal invariance. The scalar curvature of these backgrounds is non-
vanishing and we will argue that they describe a non-critical superstring, along the lines
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of [B]. However, we will not compute the Weyl beta-function, in other words we are not
computing the central charge. As a heuristic check of consistency, we will just show that
in all cases the naive central charge of the matter plus ghost action that we get in the free
field theory limit vanishes. However, a precise computation of the central charge for the
non-critical case would require the ability to analyze strongly coupled sigma-models.

Before going into the details, let us summarize the results. We will collect first the
ten-dimensional backgrounds and then the non-critical ones. In all cases we have given
both the classical Green-Schwarz and the quantum pure spinor sigma models.

Critical superstrings
The following backgrounds are interpreted as the non-compact part of a ten-dimensional
type II background AdS, x SP x CY5_,.

e AdS, x S? with RR two-form flux, realized as
PSU(1,1]2)
U(1l) xU(1)’
is super Ricci flat. Therefore, it is the non-compact part of the ten-dimensional type
ITA background obtained by tensoring it with a compact CY threefold as in [R9.

AdSy x S% (5.1)

e AdSs; x S with RR three-form flux, realized as

PSU(1,12)*
Ad 3. :
53X 5 S51.2) x S0(3)’

is super Ricci flat as well. Therefore, it is the noncompact part of the ten-dimensional

(5.2)

type IIB background obtained by tensoring it with a compact CY twofold.

Non-critical superstrings

The following backgrounds are interpreted as non-critical superstrings. The AdSs, back-
grounds with 2n units of RR-flux, which we realized as

Osp(2|2
AdS, : W(xls())@)

Osp(2]4
AdS, 750(175&153)(2) (5.3)

F4
AdSs : m

describe type IIA non-critical superstrings in 2n dimensions.!?

1While the GS sigma-model always describes the full superstring, some subtleties concern the pure spinor
action. In this latter case, it has been argued in [EI] that the non-critical pure spinor formalism describes
the full non-critical superstring spectrum. On the other hand, it might be that the AdS, x S? x C'Y5_,, lower-
dimensional pure spinor action are to be interpreted as the “topological sector” of the full ten-dimensional
superstring compactified on CY. The reason for this is that the cohomology of lower-dimensional pure spinor
theories in flat Minkowski describes the off-shell multiplets of lower-dimensional supersymmetry @, @},
and the same structure might carry on to other curved backgrounds.

5Tn addition, the AdSs non-critical background can be realized as an Osp(1|2)/SO(2) supercoset. The
classical GS sigma-model for this supercoset is well defined @] However, as we will see, in its quantum
realization as a pure spinor superstring all the correlation functions vanish. We do not know how to interpret
this fact.
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5.1 One-loop beta-function

Before verifying that the various backgrounds are conformally invariant at one-loop, we
would like to warn the reader about the validity of such computations.

The backgrounds of the ten-dimensional critical superstring can be usually considered
in the regime in which the spacetime curvature is very small. In this regime supergravity
is a good approximation. In the example of AdS5 x S°, this is the limit where the radius of
AdS is very large. Since the radius corresponds to the inverse coupling of the sigma-model,
the small curvature limit is realized as the weak coupling regime of the sigma-model.
Thus, in this case it makes sense to study the conformal invariance of the worldsheet
theory order by order in the sigma-model perturbation theory and one finds that one-loop
conformal invariance requires an on-shell supergravity background (small curvature limit).
Higher loops in the sigma-model describe higher curvature corrections to the supergravity
equations of motion.

In the case of non-critical superstrings things are typically different. Namely, the
curvature is always at string scale. In fact, as we already mentioned, there is no regime in
which non-critical supergravity (one-loop perturbation theory in the sigma-model) provides
a reliable description of the spacetime.!® Therefore the sigma-models that we described
in the previous sections are typically strongly coupled two-dimensional field theories. In
particular, they are understood to be living at a fixed point of the worldsheet RG flow.

With this caveat in mind, in this section we will check that these sigma-models are
conformally invariant at one-loop. We take this as an evidence for the existence of these
theories, while we leave for a future analysis a proof of conformal invariance at all orders
in perturbation theory.

We review the computation of the one-loop conformal beta-function in the GS sigma-
models [ff]. We will not consider the one-loop beta-function for the Weyl anomaly. We will
see then that the contribution of the bosonic part to the one-loop effective action precisely
cancels the contribution of the fermionic part, proving one-loop conformal invariance. This
is due to the fact that k-symmetry fixes the number of physical bosons equal to the number
of physical fermions, implementing therefore spacetime supersymmetry. A sigma-model on
a d-dimensional background has d — 2 physical bosonic degrees of freedom in both left and
right moving sectors. x-symmetry requires that the number of physical fermions should
also be d — 2 in both the left and right moving sectors, which fixes the total number of
real spacetime supersymmetries to 4(d — 2). This gives us sixteen supersymmetries in six
dimensions and eight supersymmetries in four dimensions (which is the same number as
required in type II compactification on CY). In two dimensions, however, since k-symmetry
removes all the fermionic degrees of freedom, we can have more possibilities, namely two

or four. We will argue in the next section what happens in this last case.

Here we review the computation of the one-loop beta-function of the AdS, coset
05p(2]4)

SO3.1)xS0) performed in [J] adapting it to the notations used in this paper. We be-

6By non-critical supergravity, as will be clarified below, we mean lower-dimensional supergravity with a
cosmological constant term, fixed at string scale value.
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gin with the action (R.1() which in the conformal gauge reads

1 1 - 1_ - 1_ -
S== [ do(zhds+-JiJs — —J3J 5.4
)\2/ 0<222+413 431>, (5.4)
in which the coupling A is written explicitly. The dependence of the sigma-model coupling
A on the string coupling gg and the RR flux N, is given by

1

z- gsN. . (5.5)
We consider the quantum fluctuations X € osp(2]4) around the classical background g
such that g = ge**. The currents are given by

J = e MM 4 e Mg (5.6)

and the corresponding equation for the right-moving current, where J = ¢~ '0g and sim-
ilarly for the right-movers. As argued in 9 the gauge X € G\'Hy can be chosen. The
one-loop beta-function is obtained from the second order expansion in A of the action. By
computing the first order expansion, integrating by parts and making use of the Maurer-
Cartan equations to express the derivatives of the currents J; and J3 in terms of the
commutators of currents one gets

1 1. - 1. - 1, - _ _ _
S1= 3 /dzz<§8X2J2 + 520Xz = 5 ([Jo, o] = [ 2, o] = [J1, 1) + [, Js]) Xz +

+[ o, 1| X1 = [, J2]X3> ; (5.7)

where we dropped the tilde on the background currents for simplicity of notation. The
second variation is then computed and as in [[J] it is convenient to restrict the computations
to backgrounds with J; = J3 = J; = J3 = 0 since k-symmetry guarantees that the beta-
function associated with the other terms in the action will be equal to the beta-function of
the term JoJs. In such backgrounds the action for the X fields reduces to

Sx = [ @2(0X20Xs + o, X210z + Lo, XaJ0X — o Xoll o, Xo] + o, Xal o, Xe] —

— [Jo, X1]0X1 — [J2, X3|0X3 — [Jo, X1][Jo, X1] — 2[J2, X1][J2, X3] —
— [ 2, Xs]l o, Xs] + ON)) - (5.8)

In order to compute the one-loop quantum corrections to the JyJo term we write the
relevant parts of the action in terms of the structure constants and the Cartan metric

p— h — ~ —
Sx = / &2 (napOXSOXE + e pgm sl P91 I8 TS XEXE + naa fE5 T8 XTOXT +
+ 10a SO TS XEOXE + 2aa fia 5 T8 TIXUXE +...) (5.9)
Upon substituting the structure constants of OSp(2|4) (see appendix C) we get
Sx = / A2 [Ny 0XSOXE — (80e0pd — Oaadpe) Jo JSXE XS — TS X15(7a)" ,OXT —

— J$X,;5(va)?50X5 — TS X1p(vam)? 5 X5 + ], (5.10)
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where X7 and X3 satisfy the Majorana conditions Xlﬁ = X{Cpp and XBB = XéS‘CdB. The
k-symmetry is most conveniently fixed as in

T8Ya = A/ I8 Ty, Jeva =) g T8, X1z = (J5J8) Y5,

where after fixing the residual conformal symmetry the bosonic indices run only on the
two transverse directions and the Majorana spinors Y7 3 satisfy the light-cone constraints
v4+Y3 = v_Y1 = 0. The free field OPEs for the fluctuations now take the form

1
X4(z,2)X5(0,0) ~ —4—77“1’ log|z|?, (5.11)
7r
o 1
Via(z,2)Y{(0,0) ~ 550, (5.12)
_ _ 5 1 5
Y34(2,2)Y5°(0,0) ~ —%(%)ﬁa : (5.13)
Thus the bosonic one-loop correction to the effec-
Q _Q_ tive action coming from figure [[(a) is
@ (b)

1 w0, A
Figure 1: The bosonic (a) and the _%JQ J2 log ;’

fermionic (b) diagrams contributing
to the one-loop beta-function. where the UV cut-off is |z| = 1/A and the IR one is

|z| = 1/p. Similarly, the one-loop fermionic correction
to the (JoJo) comes from the diagram in figure f[(b) and evaluates to

1 - A
%JSJS log E

so the total one-loop correction to <J2j2> vanishes. The gauge symmetry of the sigma-
model guarantees that no terms involving Jy appear and unless xk-symmetry does not hold
quantum mechanically, the <J1 j3> and <J3j1> are not corrected as well to one-loop.

A note on the difference between the AdS, x SP background and the AdS,, backgrounds
is in order. For the former it was found that super-Ricci flatness of the group G in the
coset G/H was a sufficient condition for one-loop conformal invariance of AdS, x SP back-
grounds [RJ]. However, as we see here, it is not a necessary condition as demonstrated by
the latter case since the Maurer-Cartan equations allow to relate contributions to the J;.J3
and J3J; beta-functions to the J.J5 one leading to the vanishing of the beta-function.

In the AdS, case perturbative conformal invariance is trivial because as discussed in
subsection .1 there are no propagating degrees of freedom after fixing the x-symmetry.

Pure spinor beta-functions. Let us comment on the computation of the beta-function
in the pure spinor formalism in the background field method. Unlike the light-cone GS
formalism, we work covariantly at all stages. The matter part of the action is identical to the
corresponding formulation of the hybrid superstring on a supercoset with Z4 automorphism,
which was considered in [Rg]. However, when the supergroups G have nonzero dual Coxeter
number, as in the non-critical backgrounds, the various terms rearrange differently.
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The contribution to the one-loop effective action coming from the pure spinor sector
was considered in [BJ| for AdSs x S®. It consists of two terms. The first term is obtained
by expanding the ghost action % i d%z (NJo+ N.Jy) to the second order in the fluctuations
of the gauge current Jy. The trilinear couplings

/ d?2 (N ([0X2, Xo] + [0X1, X3] + [0X3, X1)) (5.14)

N ([0X2, Xo] + [0X1, X3] + [0X3, X1])), (5.15)

generate the term (]\7 N ) in the action through the fish diagram in figure fJ(b)

1. A~pa=
—log—=NWIN
8m T pu

k1)
(4R (G) — 4Rypijyp (H)) - (5.16)

As explained in [Bg], there is a second contribution to the one-loop effective action in
the ghost sector, coming from the operator O(z, 2) = (N N), which couples the pure spinor
Lorentz currents to the spacetime Riemann tensor. The marginal part of the OPE of O
with itself generates at one-loop the following contribution to the effective action

1
—1
2

A 1~ [kl
og;R[ij”k”(H) / PNUINT, (5.17)

1
—/dQZ/de((’)(z,z)(’)(w,w» =
47
which cancels the term proportional to Ry (H) in (b.16). So we are left with the
following ghost contribution to the one-loop effective action in the ghost sector

o = [kl
NN R (G) (5.18)

1 A

—log—

2 T pu
where the explicit expression of the super Ricci tensor of the supergroup in terms of the
structure constants is explained in the appendix. In the AdS, x SP cases [, in which the
supergroup G is super Ricci flat, each coupling in the effective action vanishes by itself,
all of them being separately proportional to the dual Coxeter number of the supergroup
G. However, in the non-critical superstrings, in which the dual Coxeter number of G is
nonzero, even if the single terms do not vanish separately, one expects that by making
use of Ward identities they give a total vanishing contribution. We just mention that the
nontrivial cancellation between the various couplings in the effective action is precisely
what happens in the GS computation above. In that case, in the physical gauge there are
no ghosts. The bosonic and fermionic part of the beta-function are both non-vanishing
(if the dual Coxeter number of G is non-vanishing), however they exactly cancel due to
k-symmetry and using the Maurer-Cartan equations. In the pure spinor formulation, the
BRST symmetry plays the role of the k-symmetry and we have the ghost contribution
as well because we work covariantly. At the end of the day, the physical reason for the
vanishing of the beta-function would be again spacetime supersymmetry. We leave the
proof of one-loop conformal invariance of the pure spinor action in the case of nonzero dual
Coxeter number for a future analysis.
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6. The various backgrounds

In this section we give some details on the various backgrounds for which our general
construction can be applied. They are all realized as supercosets G/H, where the gauge
symmetry H is the invariant locus of a Z4 automorphism of G. The details of the super-
groups and their structure constants are collected in appendix [J.

The existing literature on type II superstrings on AdS backgrounds with RR flux,
realized as sigma-models on supercosets, is vast. The Green-Schwarz superstring on AdS), x
SP has been first constructed in the case p = 5 [ and subsequently in the compactified
cases p = 3 [B6, B1] and p = 2 [BY]. The Green-Schwarz non-critical superstring on AdSs
has been proposed in [R2],!” while the non-critical AdSy has been discussed in [B]. The type
IT pure spinor action for AdSs x S° has been introduced in 23, BJ]. The hybrid formalism
for the critical cases p = 2,3, whose matter part is similar to the matter part of our pure
spinor sigma-models, have been discussed in [B3, R9]. The type II pure spinor action for
non-critical AdS; has been proposed in [[[I]. The analysis of conformal invariance of such
superstring sigma-models in the Green-Schwarz [, hybrid B3, 9] and pure spinor [BH, [0
formulations has received some attention as well.

The proof of the classical integrability of the Green-Schwarz sigma-model on AdSs x
5% [B] has boosted the attention on the integrability of sigma-models on supercosets [, |,
M, §. Classical integrability of the type II Green-Schwarz superstring on various critical
and non-critical backgrounds has been further studied in [§, f, Hl. The integrability of
the pure spinor superstring on AdSs x S° has been proven first from the classical point of
view [B{, 1] and afterwards quantum mechanically [I(].

6.1 Non-critical AdSy

The type IIA non-critical superstring on AdSs with RR two-form flux is realized as the
supercoset Osp(2|2)/SO(1,1) x SO(2). The Osp(2|2) supergroup has four bosonic genera-
tors (E*, H, ﬁ) and four fermionic ones (Qq, Qs). The index a = + denotes the spacetime
light-cone directions. The supercharges are real two-dimensional MW spinors, the index
a = 1,2 counts the ones with left spacetime chirality and the index & = 1,2 counts the ones
with right spacetime chirality (note that in the two-dimensional superstring «, & are not
spinor indices but just count the multiplicity of spinors with the same chirality). To obtain
AdSs, we quotient by H and H, which generate respectively the SO(1,1) and SO(2) trans-
formations. The Osp(2|2) superalgebra and structure constants are listed in an appendix.
The left invariant form J = G~1dG is expanded according to the grading as

Jo=JHH £ JIH, J =J°Q,, Jo=JF., J3=J%Q,. (6.1)
and the definition of the supertrace is
(EaEp) =620, +0,6),  (QuQa) = das; (6.2)

whose details are given in an appendix.

17As explained below, the superstring based on the Osp(1]2) supercoset in [@] is different from ours,
based on the Osp(2|2) supercoset.
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r-symmetry of the GS action in two dimensions. The Green-Schwarz sigma-model
on AdSs is given by (R.10). Let us discuss its k-symmetry. If we want to define a classical
Green-Schwarz superstring in a flat background, it is well known that only in d = 3,4, 6, 10
does k-symmetry exist. This is due to the existence of the Fierz identities in the gamma
matrix algebra, which are needed to define the WZ term. Even if the GS superstring
does not exist in flat two dimensions, it does exist on a two-dimensional AdS background
with RR two-form flux. The RR flux makes it possible to construct a WZ term, as we
showed above. An example of these two-dimensional AdS sigma-models has been discussed
in [RJ]. There is, however, a substantial difference between the usual higher-dimensional
rk-symmetry and the two-dimensional one. In higher dimensions this gauge symmetry is
reducible. As a result, it removes only half of the 8’s from the classical spectrum. In two
dimensions, instead, it is not reducible and it removes all the 6’s. This fact is expected
from two-dimensional on-shell supersymmetry. In the light-cone gauge the two bosonic
coordinates are removed from the spectrum, leaving no bosonic degrees of freedom. It
is a necessary requirement then that the worldsheet fermionic symmetry remove all the
fermionic degrees of freedom as well, and not just half as in higher dimensions. Let us see
how this works in detail. We will first briefly review the reducibility of the ten-dimensional
k-symmetry on AdSs x S° and then show that in AdSs it is not reducible.

In AdSs x S® the fermionic coordinates #%,6% transform under s-symmetry as fol-

lows [[]. Working out the algebra in the transformations (R.17), we find

60% = (Az)%(nz)ﬁ, 50% = (Az)5(K7)7, (6.3)

where we picked the worldsheet conformal gauge. Here, kP and k% are the fermionic
gauge parameters; each one of them has sixteen real components of a MW spinor and
a holomorphic or anti-holomorphic vector index. The crucial point is the presence of
the (field dependent) matrices A,, Az, whose explicit form is (Az)g\ = J;”“(fym)dﬁPaﬁ and
(A;)g‘ = —J(Ym)apP?®, where PoY = 15%¢ is the RR five-form flux. Due to the Virasoro
constraints J'J., = 0 = J"Jz,, these two matrices are not invertible, and in fact they
have rank eight, rather than sixteen (it is easy to see this, e.g. because they are nilpotent).
As a result, only eight degrees of freedom can be removed by this gauge symmetry. The

following choice of the gauge parameters
“f?,) = —[ng,e'(zl)], “?1) = [J2256?3)]5 (6.4)

in fact, gives 6% = 6% = 0. Similar considerations apply to the cases d = 4, 6.
In two dimensions, the spacetime fermionic coordinates are MW spinors with one real

component. Therefore, the (non-invertible) matrices (AZ)% and (Ag)% of (b.3) are replaced

by ordinary functions. If we consider the case of the supercoset Osp(2(2)/SO(2)?, the
transformations (R.17) read!®

60% = —EFr*,  §0% = —FE; k% (6.5)

8The indices (o, &) are not spinor indices, but simply label the multiplicity of the fermionic coordinates
with the same chirality. The case Osp(1|2)/SO(2) considered in [@] is recovered by simply dropping the
indices «, G.
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The special choice (5.4) still gives 6% = 0% = 0. However, now each coordinate can
be gauged away independently and the gauge parameter is not multiplied by a nilpotent
matrix, but rather by just an ordinary function. Hence, k-symmetry in two dimensions
is not reducible and gauges away all the fermionic coordinates. The counting of classical
degrees of freedom thus agrees with target space supersymmetry, leaving an empty classical
spectrum.

This can be understood at the level of the constraint algebra as well. Consider first
the ten-dimensional GS action Sgg. Since the conjugate momenta p’s to the 6’s do not
involve time derivative, we find the so called GS constraint

5 _
S.GS ~ 0, ds = Da — 65?5
00« 50%

da:pa_ %07

that satisfy the classical algebra

{daydg}t = =11 (Ym)aps {da, dg} = _Hm(')’m)dﬁ- (6.6)

Fach GS constraint is a ten-dimensional MW spinor with sixteen real components. Eight of
these components are first class constraints that generate the x-symmetry transformations
in (p.3). The remaining eight components are second class constraints. However, the
first and second class constraints are mixed and it is not possible to disentangle them
in a manifestly covariant way. This can be seen in the algebra (B.6), since the right
hand sides are not vanishing but they are nilpotent matrices on the Virasoro constraints
™11, = 0 = II"™I1,,. In other words, the right hand sides of the constraint algebra are
projectors.

In two dimensions the situation is simpler. We still have two sets of constraints (f.4),

whose algebra now reads
{da,dﬁ} = _6aBE:’ {Jéza JE} = _5@§Eg' (67)

The claim is that all the GS constraints are now first class. In fact, in two dimensions
the Virasoro constraints are EfE; = 0 = Ef EZ, because we just have the two light-cone
directions. Therefore a consistent solution to the Virasoro constraint is F = 0 = Ej .
As a result, the algebra of the fermionic constraints now closes on first class constraints,
namely it is weakly zero. So there are no second class constraints. Now all the d’s are
generators of the k-symmetry (B.J), by which we can remove all the fermionic variables.

Pure spinor sigma-model. The action of the pure spinor sigma-model is given
by (B.19), where the pure spinor vy-system is defined according to ([8.13). The left and
right moving pure spinors A* and A® satisfy the pure spinor constraints (B.9)

NGaA? =0, X%, 0 =0, (6.8)

This is the pure spinor space for two-dimensional type II non-critical superstrings that was
introduced in [[(4, [[3, [[T]], to which we refer for more details (the different notations are
explained in the footnote [[1).
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Holography and isometries. The type ITA superstring on AdSs has a natural candidate
for the gauge theory dual, living on the boundary of AdSs. It is a superconformal matrix
quantum mechanics with global symmetry group Osp(2|2), corresponding to the global
symmetries of the worldsheet theory. The gauge theory is the worldvolume theory living
on a stack of many D-particles of the type ITA superstring and is described by a Marinari-
Parisi quantum mechanics.

A new feature of holography in our setup is that not all the global symmetries of the
dual gauge theory come from isometries of the closed string background. In the usual
example of AdS/CFT, the duality is between type IIB superstring theory on AdSs x
S® background and N' = 4 SYM theory in four dimensions. The SU(4) R-symmetry of
the four-dimensional gauge theory corresponds on the closed string side to the isometry
group SO(6) ~ SU(4) of the compact manifold S°. Consider now the AdSy non-critical
superstring. It is invariant with respect to a global SO(2) symmetry, generated by H.1
This symmetry corresponds again to the R-symmetry on the gauge theory side. However,
this rotation does not correspond to any isometry of the closed string background, still it
is a global symmetry of the closed string theory. The interpretation of this kind of non-
geometric symmetry would fit with the intuition coming from the holography in the case of
gauged supergravity. In the gravity spectrum, in that case, there are some additional gauge
fields which couple to dual gauge theory operators and explain the extra gauge symmetry.
On the string side there are some vertex operators with the correct R-charge assignment,
that we could scatter to reproduce the gauge theory computation.

The Osp(1|2) supercoset. We would like to make some comments here on a different
realization of type ITA non-critical superstrings on AdSs background that was proposed
by Verlinde [2F]. The action is based on the supercoset Osp(1|2)/SO(1,1). The algebra of
Osp(1]2) can be easily obtained from the one of Osp(2|2) (that we list in the appendix) by
dropping the indices «, &, thus removing half of the fermionic generators and discarding
the bosonic generator H. The sigma-model constructed in R3] can be recast in the usual
Green-Schwarz like form (R.10) using the grading zero Maurer-Cartan identity relating the
exterior product of the bosonic Cartan one-forms with that of the fermionic one-forms.
Then, one can apply the machinery developed in this paper to prove that the Green-
Schwarz sigma-model still has an infinite number of nonlocal conserved charges, precisely
of the form given in (R.29). As a result, the classical Green-Schwarz superstring on the
supercoset Osp(1|2) is well defined and integrable.

The pure spinor sigma-model is still given formally by the action (B.19). But when we
try to identify the pure spinor variables, we encounter the following feature. The left- and
right-moving pure spinors A and X\ are Weyl spinors of opposite chirality which satisfy the

pure spinor constraint

M=0, XN=0. (6.9)

YEven if we eventually quotient by this generator, the global symmetry of the superstring is the full
Osp(2|2). In the same way, in the AdSs x S5 example, the superstring is invariant with respect to the full
supergroup PSU(2,2/4).
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This fits in the general discussion of section B.1], by noting that the supersymmetry algebra
is now generated by the superderivatives d and d satisfying

{d,d} = —E], {d,d} = —E> . (6.10)

z

The solution of the Osp(1|2) pure spinor constraint ([.9) requires that A\ = 1192 using the
two Grassmann odd fields 11, 1s.

In the pure spinor sigma-model, the pure spinor variables are interpreted as the ghosts.
Consider for simplicity the left sector only (the closed string is the product of the left and
right sectors). Then, the physical cohomology is described by operators of ghost number
one and weight zero, which in this case are U = AA(6,z%), for a generic superfield A
depending on the zero modes only. On general grounds, the prescription for the tree level
amplitudes in the pure spinor formalism requires the insertion of three unintegrated vertex

operators of ghost number one
A= UDUPUS) | Depr, (6.11)

where the dots stand for a generic product of integrated vertex operators.?? However, all
of these tree-level amplitudes include products of three pure spinors which vanish due to
the pure spinor constraint.

6.2 Non-critical AdS,

The non-critical type ITA superstring on AdS; with RR four-form flux is realized as a
sigma-model on the Osp(2]4)/SO(1,3) x SO(2) supercoset. The Osp(2|4) superalgebra
and structure constants are discussed in the appendix. The bosonic generators are the
translations P,, the SO(1,3) generators Jg, for a,b = 1,...,4 and the SO(2) generator
H. The fermionic generators are the supercharges Q,,Qgs, where a,& = 1,...,4 are
four-dimensional Majorana spinor indices. We have thus N/ = 2 supersymmetry in four
dimensions. The charge assignment of the generators with respect to the Z4 automorphism
of Osp(2]4) can be read from the Maurer-Cartan one forms

Jo=J% g+ JIH, J=J°Q,, Jo=J"P,, J3=JQ,. (6.12)

The non-critical Green-Schwarz sigma-model on AdS; was first introduced in [, [L1].
Again, it is given by (R.10), with the appropriate definitions of the supertrace

<Pan> = Nab, <QaQé¢> = 2004(3{7 (613)

where CN'QO; is an antisymmetric matrix numerically given by the four-dimensional charge
conjugation matrix.

The pure spinor sigma-model, which was first introduced in [[LT], is given by (B.19),
where the pure spinor 3y-system is defined according to (B.19). The left and right moving
pure spinors A\* and A® are four-dimensional Dirac spinors, satisfying the pure spinor

20The generalization of the ten-dimensional saturation rule to the non-critical superstring was briefly
discussed in [@]
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constraints (B.H). This is the pure spinor space for four-dimensional type II non-critical
superstrings that was discussed in [[LI]], to which we refer for further details. In the case
in which the RR flux is space-filling, there is a subtlety in the definition of the action, in
particular in the coupling (dd). In ten dimensions [Bg], this part of the action couples the
RR superfield P2? to the fermionic variables dg and JE as simply ngﬁﬁ CZE' In the AdSy
case, the relation between the RR superfield and the four-form field strength is

~ 1 . ~ . ~

Since the RR bispinor is proportional to 47, it is a pseudoscalar quantity. On the other
hand, we want the worldsheet action to be a spacetime scalar, therefore in the GS ac-
tion (P.10) the correct coupling is dy (7> P)*@dg. Since (75)? = —1I, we can again relate the
sigma-model on the supergroup with the background fields as explained in the appendix.
Notice that the ypy; is present in the (dd) part of the action whenever the RR flux is
space-filling and the spacetime dimension is even, because in this case the RR bispinor su-
perfield is proportional to the product of all the gamma matrices. In the two-dimensional
case, however, we did not underline this subtlety, because we used a one-dimensional spinor
notation.

The theory dual to this closed superstring is a strongly coupled three-dimensional
SCFT with N/ = 2 supersymmetry and U(1) R-symmetry. Note that the R-symmetry is
realized in a non-geometric way on the string side. It would be interesting to identify the
dual to this string theory and to study how the holographic map works in the non-critical
string.

6.3 Non-critical AdS; x S! with open strings
The AdS5 x S* background with five-form flux can be realized as the supercoset

SU(2,2|2)
A - ’ .
45 X 5 = 5501, 4) x S0(3)

The type IIB superstring theory on this background is not expected to be consistent. Even

(6.15)

if it is one-loop conformally invariant, the beta-function for the Weyl invariance should be
nonzero [Ig]. In this section, we will first describe the closed superstring sigma-model on
the supercoset (6.15). In appendix [ we will speculate about a possible realization of this
background as a strongly coupled fixed point without the need of adding open strings.

The bosonic subgroup of SU(2,2|2) is SO(2,4) x SO(3) x U(1). It has nineteen bosonic
generators: the five translations P, along AdS5 and the translation R along the circle
St the ten angular momenta J,; in AdS5 and the three bosonic generators T, of SO(3).
The sixteen fermionic generators are given by the two supercharges Quo/, Qaa’, Where
the unprimed indices a,& = 1,...,4 are five-dimensional spinor indices in the Majorana
representation and the primed indices o/, &’ = 1,2 are SO(3) spinor indices. The superal-
gebra and its structure constants are listed in appendix [d. The grading assignment of the
generators can be read off the following Maurer-Cartan forms

Jo = J%J 0+ J Ty, Jo=JP,+ JR, (6.16)
Ji = J Qs J3 = J% Q.
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The k-symmetric Green-Schwarz sigma-model is again constructed as in (R.10), with
the appropriate definitions of the supertrace

<Pan> = —Tab, <RR> = 17 (6.17)
<Qaa/Qdd’> = CaézCa’d’, (618)

where 50@ and 5’0/5/ are antisymmetric matrices numerically given by the charge conjuga-
tion matrices of SO(1,4) and of SO(3). This Green-Schwarz action, although in a slightly
different form, was discussed in [, {Jl. The classical sigma-model action is k-symmetric
and its one-loop conformal beta-function vanishes.

However, by looking at the non-critical supergravity equations of motion [[[g], we know
that we have to add an open string sector, namely space-filling D-branes, in order to
properly cancel the Weyl anomaly, which from the spacetime point of view is encoded in
the dilaton equation of motion. We review in appendix |D| the target space computation
of [I9]. The computation of the Weyl anomaly, which fixes the radius of the AdS, is
tantamount to the evaluation of the central charge of the quantum sigma-model at the
strongly coupled fixed point. As in the other examples, we would need strong coupling
techniques to address this question, which are lacking at the moment.

In order to study the quantum sigma-model, we can introduce the pure spinor formu-
lation of the supercoset by considering the action (B.19), where the pure spinor 3y-system
is defined according to (B.12). The left and right moving pure spinors A and A% are
five-dimensional symplectic Majorana spinors (with a corresponding SO(1,4) spinor index
a or o) and have an extra index o/ and & in the spinor representation of SO(3).2! The
six-dimensional pure spinor constraint (B.9), rewritten in terms of the supercoset (£.17),
reads

Clug A (CY™) A =0, m=0,...,4, (6.19)
C&/ﬁ/Caﬁ)\aa, )\6'6, - 07

where 7™ and C' are the SO(1,4) gamma matrices and charge conjugation matrix and C’
is the SO(3) charge conjugation matrix. The pure spinor action is again BRST invariant.
As for the k-symmetry discussed before, it seems that in lower-dimensional pure spinor
superstrings, the BRST symmetry is related to the one-loop conformal invariance but not
to the Weyl invariance.

Adding open strings. The pure spinor sigma-model we have constructed above, even
if it is gauge invariant and BRST invariant at all order in perturbation theory, does not
correspond to a consistent non-critical superstring. It is only consistent after adding an
open string sector. In particular, [I] suggested introducing boundary conditions corre-
sponding to uncharged space-filling D-branes. We need uncharged D-branes because we

21The original six-dimensional pure spinors A** of (@) is in the Weyl representation of SO(6) and has
an additional index ¢ = 1,2 transforming as a doublet of SU(2). It decomposes naturally according to the
local symmetry group of our supercoset. The Weyl representation of SO(6) corresponds to the symplectic
Majorana representation of SO(1,4) ~ Sp(4), while the extra harmonic index ¢ corresponds precisely to the
spinor index o’ of SO(3).
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do not want to introduce any additional RR flux. They can be thought of as space-filling
brane-antibrane pairs.

When we put simultaneously D-brane and anti-D-brane boundary conditions in a flat
background, two things usually happen. This completely breaks spacetime supersymmetry,
since they preserve two different sets of supercharges. An open string tachyon appears in the
spectrum. However, it was argued that, in the case of space-filling branes and anti-branes
on AdSs x 81, the physics is different from the flat space one. In particular, the space-filling
brane anti-brane system will break only half of the sixteen spacetime supersymmetries.??
We suggest that this system will break the global SU(2) symmetry of the supercoset as
well, leaving just a bosonic SO(2,4) x U(1) global symmetry. Moreover, the mass squared
of the open string tachyon, albeit negative, will be above the BF bound and therefore lead
to no instabilities. It would be interesting to prove these two conjectures, by studying
the spectrum of the worldsheet theory we have just described. We leave this for future
investigations.

It was suggested in [[[J] that the gauge theory dual to this closed plus open superstring
theory be four-dimensional N/ = 1 SQCD at an IR superconformal fixed point. Note
that holography usually relates a closed superstring theory to a gauge theory, while here
we are considering a closed plus open superstring theory. The Ny brane anti-brane pairs
correspond to the gauge theory flavors. Provided that the two conjectures we discussed
above are indeed verified, the global symmetries on the two sides of the duality are matched.
The string theory global symmetries are SO(2,4) x U(1)g, coming from the AdSs x S*
isometries, and an additional SU(Ny) x SU(Ny) flavor symmetry group that rotates the
space-filling branes and anti-branes. This fits nicely with the global symmetry group of
SQCD at the IR fixed point.

The first step in establishing this holographic duality would be to compute the mass
of the open string tachyon, which will depend on the RR five-form flux N, and the number
of flavor branes Ny. One expects that it satisfies the BF bound when Ny and N, are inside
the conformal window of the dual gauge theory.

6.4 Ten-dimensional AdS, x SP x M

All the backgrounds of the kind AdS), x S? with RR p-form flux correspond to the noncom-
pact part of a ten-dimensional background.?® This is because the scalar curvature of these

221n the six-dimensional linear dilaton background, the system of N + space-filling brane/antibrane pairs,
together with N. D3 branes extending in the flat Minkowski part of the space was studied in [@] and later
inn [@] For a finite number of colors and flavors, the system preserves four supersymmetries, even if branes
and anti-branes are present simultaneously. We can regard the AdSs x S* background as the near horizon
limit of the D3 branes of the linear dilaton system, when the number of colors and flavors becomes very
large. As in the usual AdSs x S° case, in the near horizon limit we double the number of supersymmetries,
which gives a total of eight supercharges, the appropriate number to match the dual four-dimensional N' = 1
SQCD in the conformal window.

2 They have been studied in the hybrid formalism in [E} for p =2 and in @] for p = 3. The matter part
of the hybrid action is the same as the matter part of the pure spinor action. However their ghost sector is
different.
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spaces vanishes so they satisfy the one-loop beta-function equations with D = 10.24 The
case p = 5 corresponds to the well known AdSs x S° background [i]. The lower-dimensional
cases p = 2,3, are suitable for a Calabi-Yau compactification on a three- and a two-fold,

respectively.

Curvature equation. In [R9 it was shown that if G is a Ricci flat supergroup, then the
scalar curvature of the supercoset G/H is equal to the curvature of its bosonic subgroup,
namely the bosonic AdS), x SP manifold. The AdS and the sphere give the same contribution
but with opposite sign,?> so the total scalar curvature of the supercoset vanishes. We will
review now how this cancellation works at the level of the super Ricci curvature itself.

We denote by a,b=1,...,p the vector indices along AdS, and by «’,0' =1,...,p the
vector indices along the SP. The bosonic legs of the super Ricci curvature are

1 /
Rap = 1_6{’7aa 'Yb}aafsa o = NasOc + Nab (6'20)
1
= <§5Adsp55p — Vaas, + 1) Nab
1 ’ ’
Ra’b’ = _E{’Yanybl}a O/(50{0{ — ?’]a/bléc c! —|— 77a’b’ (621)

1
= — <§SSPSAdSp — Vsp + 1) Na’b! (6-22)

where 74, and 7,y are the bosonic metrics on the supergroup and « are the spinor indices
on AdS, while ¢/ are the spinor indices on SP. S Ads, and Sg, stand for the dimension of
the spinor representation of the AdS, and SP part of the super-algebra, similarly Vaqs,
and Vg, are the bosonic dimensions of the AdS, and S? spaces. It is clear that the bosonic
AdS), and the SP contributions to the scalar curvature cancel each other. For the Fermionic
part of the super Ricci curvature we have

1 /
R(G/H)aa’ﬁﬁ’ == [ e /E'(C’Yafya)oﬁ + Ca,B,(C/fya 'Ya’)aﬁ — Cé’a/(CVGVa)Ba +

8 «
o 1 c cd
+ C’\,a,(C’fy fya/)aa] — 5 (C;/E,(C’y dfycd)aa + CO/EI(C/'}/ d ’yc/d/)aa> =
1
= S [V8)? = (Vaus,)?] €Ly (6.23)

where C' and C'' are the charge conjugation matrices of the AdS, and SP part of the su-
pergroup. We find that the fermionic part of the super Ricci curvature vanishes identically

R(G/H) —0. (6.24)

aa! B’

As a result, the supertrace of the super Ricci curvature vanishes.

*4This agrees with the results of [@] Those authors found that there is no solution to the leading order
non-critical supergravity equations for these backgrounds when supported only by RR flux.

ZNote that in the supercoset construction the radii of AdS), and SP need to be equal in order to preserve
the superalgebra.
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6.5 Central charge

In order to verify that our models are consistent string theories we need to see that their
total central charge vanishes. Since the sigma-models are strongly coupled, it is hard to
compute the exact central charge at their fixed point. What we can do is to consider the
“naive” central charge that one would get in the small curvature limit, i.e., in the classical
sigma-model. In the pure spinor sigma-model, we just add up the contribution to the
central charge coming from each CFT separately, since in the small curvature limit they
are just free and decoupled. We are in fact just computing the flat space central charge.
In each sector, the matter part is given by the bosons {X?}, for a = 1,...,2d, which are
worldsheet scalars, and the supercoordinates and their conjugate momenta {p,, 0%}, which
have weight (1,0), while the pure spinor beta-gamma system {wq,, A*} has weight (1,0)
and has been described in section B.1]. It turns out that in all different dimensions, the
matter central charge is exactly cancelled by the ghost central charge. The field content
is the same for both the non-critical and the critical models (see [[L1] and [[[4, [[J]). We

summarize the various contribution to the vanishing central charge in different dimensions

as follows
d=2 cot = 2)x1+ (4 por 2 wry =0,
d=4: Ctot = (4){X}+ (—8){1,79} "’(4){10,)\} =0, (6.25)
d=6: Ctot = (6){X}+ (—16){1,79} —|—(10){w7>\} =0.

This counting of degrees of freedom is of course heuristic. The evaluation of the exact
central charge requires to solve for the spectrum of the model. One way of doing it is by
making use of the Bethe ansatz approach developed in [iJ]. We hope to report about this
in the future.

7. Discussion and open problems

In this paper we have constructed the worldsheet theory of type II superstrings on AdS
backgrounds with RR flux, which are realized as supercosets G/H where G has a Z4
automorphism. We have shown in particular that in all such backgrounds string theory
is quantum integrable. This holds both for the non-critical and for the ten-dimensional
superstrings, in particular for the topological sector of the latter. A nice feature we found?®
is that the dependence of the Lax connection a(u) on the spectral parameter (B.35) is the
same in all models. Once we established the existence of these type II backgrounds, there
are many directions that open up for a future investigation. Let us list some of them.
The worldsheet theory for non-critical strings is a strongly coupled sigma-model, whose
coupling is given by the curvature of AdS. Due to the lack of tools to analyze strongly cou-
pled sigma-models we could prove neither exact conformal invariance nor Weyl invariance.
It would be interesting to prove the existence of the fixed point non-perturbatively, or at
least to all orders in perturbation theory.?” In the case of AdSs more can be said. The

26This was also noticed in [E] for the GS sigma models.

2TFor the backgrounds of the kind AdS, x SP, the beta-function vanishes at all orders in perturbation
theory [@] However, the method used in those cases relies on an extension of the supergroup G which is
not possible in our non-critical cases.
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proofs of gauge invariance, BRST invariance and integrability of the sigma-model that
we discussed above hold in general to all orders in the worldsheet perturbation theory.
The non-perturbative contributions to the action, on the other hand, come in the form
of worldsheet instantons and are counted by the factor 67%2, where A is the sigma-model
coupling. In the AdSs case there are no two-cycles the worldsheet instantons can wrap on.
Hence, the sigma-model does not receive any non-perturbative corrections and it is gauge
invariant, BRST invariant and integrable exactly.

Once it is established that these superstring sigma-models are integrable, it is natural
to look for their spectrum. The computation of the quantum spectrum of string theory
on AdSs x S° based on the PSU(2,2[4) supercoset is a formidably hard task. Our lower
dimensional non-critical string theories might be easier to solve since they are described
by somewhat simpler supercosets. The AdSs background is probably the simplest ex-
ample of a type II RR background and we have argued that the sigma-model is exact
non-perturbatively, due to the absence of worldsheet instantons. Since the spacetime is
two-dimensional, the semiclassical spectrum is empty. The next non-trivial example is
the AdS, background, for which the semiclassical spectrum contains for example spinning
string solutions. As a first step, it would be interesting to work out the complete classical
spectrum, encoded in the algebraic curve method of [E], which fully exploits the integra-
bility properties of the classical sigma-model. In order to look for the spectrum of the
quantum sigma-model, one can follow two different approaches. A first way is by comput-
ing the pure spinor cohomology. The second approach makes use of the Bethe ansatz, as
proposed in [iJ]. In the latter paper, the authors focussed on a toy model, based on the
supercoset Osp(2m + 2|2m). It seems plausible that our sigma-model for AdSy, which we
realized as a Osp(2]4) supercoset, might be solvable in the same spirit. The exact solution
will fix also the value of the central charge at the strongly coupled fixed point, which we
have not been able to evaluate.

Another issue pertains to the interpretation of the ten-dimensional backgrounds
AdS), x SPxCY5_,, whose non-compact part we have discussed in detail. While their GS for-
mulation certainly describes the full compactified superstring, the interpretation of the pure
spinor formulation is still not completely clear. Recently, there have been different propos-
als regarding the pure spinor superstring compactified on Calabi-Yau [24, [L4, [L3, R§, B4]. In
the case in which the background is flat four-dimensional Minkowski times a CY three-fold,
it has been argued that the pure spinor formalism computes only the topological ampli-
tudes of the full superstring [24]. It would be interesting to understand what happens in
our backgrounds.

In section B.4 we considered the addition of boundary conditions to the sigma-model, in
particular space-filling D-branes. The classification of branes in non-compact spaces can be
in general a hard task, even when they are supported only by NS-NS flux. Since very little
is known about such classification on RR backgrounds, it would be nice to make progress
in this analysis. In particular, the pure spinor formalism seems a convenient starting point
for such a search, due to his simple couplings to RR backgrounds.

An interesting open problem is to figure out how holography works for the non-critical
backgrounds and to identify the field theory duals to these new non-critical AdSsg back-
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grounds if they are field theories at all. In particular, the existence of the infinite set of
nonlocal charges on the string sigma-model is related to the Yangian symmetry of the dual
gauge theory. In the AdSs x S° case, the existence of the Yangian symmetry has been
established in the dual ' = 4 gauge theory at weak coupling [L7q]. It would be nice to
identify the Yangian symmetry on the gauge dual side in all our cases.

The duals of the non-critical superstrings on AdSsy are in general strongly coupled
2d — 1 superconformal field theories. A particularly interesting example would be the
relation between the type IIB non-critical superstring on AdSs x S with space-filling
branes and four-dimensional N' = 1 SQCD, which was suggested in [[J by looking at the
six-dimensional non-critical supergravity. In this case there is no decoupling limit, namely
the string dual of the conformal window of SQCD should contain closed as well as open
strings. It would be nice to analyze our worldsheet theory for such background. Firstly,
one should check the vanishing of the one-loop beta-function in the presence of boundaries.
Only with the contribution coming from the boundary of the worldsheet should the theory
be Weyl invariant at one-loop. This is equivalent to the statement, reviewed in appendix [,
that the non-critical supergravity equations of motion for both the metric and the dilaton
are satisfied only with the inclusion of the space-filling branes. Then, one should show that,
at least perturbatively in the sigma-model coupling, the mass of the open string tachyon
lies above the BF bound. An interesting thing to study is T-duality along the circle, which
might be related to Seiberg duality in the dual SQCD [[Ld].

Finally, it would be interesting to see what happens to the Yangian symmetry of
the closed string sector once we add boundaries. The Bethe ansatz for open strings on
AdSs x S° was discussed in [4] and in a recent paper [[] it has been shown that for
certain choices of boundary conditions the bosonic part of the open string sector is still
integrable. It would be interesting to check whether this is true for the AdSs x S' model
with space-filling branes. In the case in which the open string sector is integrable, it would
be intriguing to investigate the implications of such a symmetry in the dual SQCD.
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A. k-symmetry and torsion constraints

In section . we constructed the Green-Schwarz action on a supergroup with Z4 auto-
morphism and we found that the structure constants of the supergroup have to obey the
relation (R.19) rewritten here

Mo (Fonfon + TonFia) = Calan (A1)
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where c,4 is some symmetric matrix, in order for the action to be x-symmetric. We will
show now how this relation is equivalent to the torsion constraints of the supergravity
background.

Recalling that the spacetime torsion is defined as

[Va,Vg} = T{sVe, (A.2)

we find that the structure constants ff - and fbﬁ ., correspond to some particular components
of the torsion

A N L (A.3)

ad”

Let us specialize to the case AdS, x S? first, namely the type II superstring compactified
on a Calabi Yau. In type II supergravity the torsion is related to the RR superfield P?%
by the following constraint [[d]

Taﬁa = (WG)aﬁPBﬁa de = (r)/a)dﬁpﬁﬁ’ (A4)
and the RR superfield is given by
~ s ~ .
phB — i_'(%l___mp)ﬁﬁ iy — g N5 (A.5)

where F), is the self dual p-form flux and the 7, are the Pauli matrices, namely the off
diagonal blocks of the Dirac matrices of SO(1,p — 1). The structure constants are given
in appendix [C.6As a last ingredient, we notice that the metric on the supergroup is pro-
portional to the inverse of the RR superfield Ngg (P_l)ﬁﬁ x 563' Putting everything
together, we can cast the relation ([A.1]) in the form

Mo (Fon S+ FonFia) = (s W H205a = 2nwdace (A.6)

so we find that the symmetric matrix c,g = dn4 is proportional to the inverse RR flux.
In the case of the non-critical AdSy, AdSs and AdSs x S', the same result follows,

provided an analogous torsion constraint (JA.4) is imposed. This can be understood again

as a supergravity constraint of N' = (2,2) in two dimensions [i7]] or N = 2 in four and six

dimensions [[i§].

B. Pure spinor sigma-models

In this appendix we collect some computations used in the main text for the pure spinor
superstrings. We refer to sections 2 and 3 for the notations.

B.1 The pure spinor sigma-model from BRST symmetry
Using the fact that (AB) # 0 only for A € H, and B € Hy—p, r = 0,...,3 29, the most

general matter part which has a global symmetry under left multiplication by elements of
G and is invariant under the gauge symmetry g ~ gh, where h € H, is

/d2Z<OcJ2j2 + ﬂJljg + ")/Jgjl + 5J36Z+ ejld — fdc{> ,
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where we used the Lie-algebra valued field d, d defined by d = d,n“*Ts, d = dan®*T,
and f is the RR-flux. While in flat background the d’s are composite fields, in curved
backgrounds they can be treated as independent fields.

The pure spinor part includes the kinetic terms (wd\) and (wdN) for the pure spinor
(B~-systems. Since these terms are not gauge invariant, they must be accompanied by terms
coupling the pure spinor gauge generators with the matter gauge currents (N.Jy + N.Jo)
in order to compensate. The backgrounds we are considering also require additional terms
which must be gauge invariant under the pure spinor gauge transformation of w and w and
hence must be expressed in terms of the Lorentz currents and the ghost currents Jy, = (wA)

and Jg, = (W) (such terms are given by ng{ in the Type II action in [A]]). The additional
term required is (NN).
Therefore the sigma-model is of the form

S = /d22<aJ2J2 + ﬂJljg + ’)/J3j1 + (5J3J—|— Ejld — fd(j—{—
+ WO + wON + NJy + NJy + aNN) (B.1)

and the accompanying BRST-like operator is
Qp = 7{ (d=Ad — dzAd) . (B.2)
By integrating out d and d and redefining v — v + % one gets
S = /d2z<aJ2J2 + BJ1J3 + 4 J3J1 + wON + WON+ NJy+ NJy+aNN) . (B.3)

After rescaling A — %)\, w — ééw, A — %5\, w — {u’} the BRST currents are jp = (Ad) =
(M\J3) and jp = (Ad) = (\J1). The BRST charge (B.2) now reads

Qp = f(dz)u]g + dfj\jﬁ . (B.4)

The coefficients of the various terms will be determined by requiring the action to be
BRST invariant, i.e. the BRST currents are holomorphic and the corresponding charge is
nilpotent.

From the action (B.J) we derive the following equations of motion

(B+7VJs = (28— a)[J1, o] + (a+ B —7)[Jo, Ji] + [N, Js] + [N, J5],  (B.5)
(B+VIL = (a—=28)[J2, 3]+ (y —a — B)[Js3, o] + [N, i] + [N, J1],  (B.6)
VA = —a[N,})], VA= —a[N,). (B.7)

After one takes into account that [N, A] = 0 because of the pure spinor condition {\, A} =
0 ], requiring 955 = 0 leads to the equations

ﬁ"")/:l, O‘:2ﬂ’ Q‘Fﬂ:’)/, a’:_l’ (B8)
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whose solution is

1 1 3
« 2 ) /3 4 Y ,y 4 ) a ( )
With this solution it is easy to check that

djp = ((\, N1}, (B.10)

which again vanishes because of the constraint {\, A} = 0. The proof of the nilpotence of
the BRST charge then follows just as in [[L0].
Hence the pure spinor sigma-model is

1 - 1. - 3. - - - _ _ _
S = /dzz <§J2J2 + ZJng + ZJBJI + woA+ wON+ NJy+ NJy — NN> (B.11)
for all dimensions and this of course matches the critical case as well.

B.2 BRST invariance of the conserved pure spinor charges

We would like to verify that the conserved charges (B.3f) are BRST invariant. This re-
quirement stems from the fact that for a charge to be a symmetry, it is not sufficient for it
to be conserved. A symmetry maps physical states (states in the pure spinor cohomology)
to other physical states. For this to happen, the charge itself must be BRST-closed.

The BRST transformations of the various worldsheet fields are given by

og = gleA+e)), Spw=—Jze, Opw=—Jie, SpA=0gA=0, (B.12)
dpJo = [J3, €] + [J1,€)], (B.13)
dpJ1 = O(eX) + [Jo, €A + [J2, €M, (B.14)
dpJo = [J1,€A] + [J3,€)], (B.15)
dpJs = O(eX) + [Ja, €A + [Jo, €N, (B.16)
SgN = {J3¢,\}, 6N = {Jie,\} . (B.17)

In order to demonstrate that the charges (B-3d) are indeed BRST closed, we define the
following operator

Uz, Z;y,y) = Pexp [—/ (dza + déd)} . (B.18)
y
The BRST variation of Us can now be written as

opUc = —/ dzU(z,T;2,2)0pa(z,2)U(z, 2,9, 7) —
C

— /CdzU(x,ajﬂ; z,z)0pa(z,2)U(z, z;y,9) , (B.19)
where
650 = g|ea(( 1, eX] + [, A]) + 1O+ [Jo, eX] + o, eX]) +
+ e3(DN + [Ja, €N + [Jo, €X]) + en{Jze, A} + [eX + e, A]}g—l . (B20)
dpa = 9[52([j1,6>\] + [J3, €A]) + (€O + [o, €A] + [Ja, €A]) +

+ 23(€ON + [T, N + [Jo, €N]) + en{T1e, A} + [eh + €N, A]} gl (B21)
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and g : ¥ — G is the mapping from the worldsheet to the supergroup G.
The derivative terms in the first integral in (B.19) can be computed by integrating by
parts, so the derivative terms turn out to be

/ d=U(x,7;2,2)g(2, 2) [[creh + caed, Al + [cred + esed, )] _g(2,2) 7 U (2, 29, 9) -
C )
Plugging this back into the integral and collecting all terms one gets

I = /CdzU(a:,f; 2,2)g(z, 2) {(02 —ci1(c1 +2))[J1, €A + (e3 — ca(er + 1) — c1)[J2, €A] +
+ (CN — 03(01 + 1) — 01)[J3, 6)\] + (CQ — 03(03 + 2)[J3, 65\] + CN(Cl + 1)[6)\,]\7] +
+ (c1 — calez + 1) — ¢)[Ja, eA] + (c1(c3 + 1) + ¢)[eX, J1] +
+en(eg + 1)[el, N]] . Zg(z, )z, 29, 7) . (B.22)

)

Note that [A, N] = 0 by using the Jacobi identity and the pure spinor constraint {\, A} = 0.
The last term is handled by using the equation of motion VX = [N, A]

[ 420,752, 209(2.2) [N, g(2,2) 01 500) =
C k)

= - [ a1, 290 2) (X, A] + X+ ot ] _gle02) U zs)
C z
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Using this for a fraction z of [e\, N] yields that the integral evaluates to

I = / d2U(z,%;2,2)9(2, Z) [(02 —ci(c1 4+ 2))[J1, e\ + (c3 — ca(c1 + 1) — ¢1)[J2, €] +
C

+ (CN — 03(01 + 1) — 01)[J3, 6)\] + (CQ — 03(03 + 2) + .%'(03 + 1))[J3, 65\] +
+ (c1 — calez + 1) — c3 + 2(cg + 1)) [Jo, €] + (c1(e3 + 1) + 3 — x(ep + 1)) [eX, J1] +
+(ewles +1) = zlen + DA N]]_a(.9) Uz z2,0) (B.23)

)

CNC(;%I) and substituting (B.3F) we get I = 0. The second integral

in (B.19) vanishes in a similar way, so the conserved charges found here are indeed BRST

After choosing x =

invariant.

B.3 Ghost number one cohomology

In this appendix we will prove the claim made in section [.3 that the classical BRST
1)

cohomology of integrated vertex operators [ d22<(9§,2 ) at ghost number one is empty.

The most general ghost number one gauge-invariant integrated vertex operator is

<O§12)> = (a1j2 [Jg, 65\] + (_11J2[j1, 6)\] + agjg[Jl, E)\] + asJy [jg, 5\]
+asJs [N, 6)\] + dgjl [N, 65\] + CMJg?(E)\) + d4j1V(65\)>, (B.24)

where we have written all the independent terms up to integrating by parts on the Maurer-
Cartan equations. We will consider the insertion of a boundary at the end and concentrate
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on the bulk terms first. The BRST variation of the operator (B.24) consists of three
different kind of terms

e'Q(OiQ} = Oy + Qs + Q3 4 e.o.m.’s + pure gauge, (B.25)

where we have omitted terms proportional to the ghost equations of motion (B.31]) and
to the gauge transformations parameterized by {\, A\}. We have to impose that the three

terms €2; vanish separately. The first term is
O = (a3 + ag — az — ag){V(eAN)V(€'N)), (B.26)
so we demand
a3 +as = as + aq. (B.27)
Imposing the vanishing of the second term

Qy = ((a1 —a)+asz+ a4 —az — d4)[J3, 65\] + (a2 — @2)[j3, 6/5\] [Jl, 6)\]
—|—(a1 —ay +az — C_LQ)[JQ, 6/)\] [jg, 65\]>, (B28)

we find the additional conditions
a; = ag, ag = as. (B.29)
Finally, the third term reads

Q3 = <(a2 + dl)[jl, 6,)\] [Jl, 6)\] + (a1 + @2)[J3, 65\] [jg, 6/5\]
—CL4[J3, 6)\] [jg, EI)\] - (_14[j1, 65\] [Jl, 6/5\]>. (B.30)

If we expand on the supergroup generators, the first term on the right hand side is pro-
portional to AN([Ts, T,][T), T5]), where we summarized with a greek letter the various
spinor properties of the supercharges and the pure spinors in the various dimensions. In all
dimensions, due to the supersymmetry algebra, the term inside the supertrace is propor-
tional to (0™ )sa(0m)gp, Where opy are the off diagonal blocks of the Dirac matrices. Now
comes the crucial property of our lower-dimensional pure spinors, which behave precisely
like the ten-dimensional ones. In dimension d = 2n, the product of two pure spinors is
always proportional to the middle dimensional form aglé"'m", therefore the terms in (B.3(])
are all proportional to

oo Oms (B.31)

but this expression vanishes in all even dimensions due to the properties of the gamma
matrix algebra. Thus, in all dimensions we find that 23 = 0 identically. As a result,
imposing that [ d2z<(’)£12)> is BRST closed requires that the coefficients a;, a; satisfy (B.27)
and (B29).
On the other hand, the following operator
Egoz) = —agJoJy + (a1 — az)J1J3 + (a3 — @y + ag — a;)NN
—|—(a4 + a1 — ag)w?)\ + ((_14 + a1 — (IQ)'LDVS\, (B32)
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is such that
Q / P22(sY) = / 220, (B.33)

so the cohomology for integrated vertex operators at ghost number one is empty.

C. Supergroups

In this appendix we list the details of the superalgebras we need to realize the various
backgrounds in the text. We constructed our superalgebras according to [[9].

C.1 Notations

Our notations follow the ones used by [B(]. The superalgebra satisfies the following com-
mutation relations:

[T, Qal = FipaQp (C.2)
{Qa, Qp} = ALpTm (C.3)

where the T’s are the bosonic (Grassman even) generators of a Lie algebra and the Q’s are
the fermionic (Grassman odd) elements. The indices are m = 1,...,d and a = 1,..., D.
The generators satisfy the following super-Jacobi identities:

trfinp + Frm Fip + fhn iy = 0 (C4)
Fl ) — FL F — fh,Fo, =0 (C.5)
Fpo Alls + FigAls — [, Al =0 (C.6)
A B 4 A5y AL, = 0 (©7)
Generally we can define a bilinear form
< X, Xy >= Xy Xy — (=195 Xy X = CF Ly Xp (C.8)

where X can be either T or @ and P = 1,...,d + D (say the first d are T’s and the rest
D are Q’s). g(Xys) is the Grassmann grading, ¢(T) = 0 and g(Q) = 1 and CL,, are the
structure constants. The latter satisfy the graded antisymmetry property

chy = —(=1)sansXm ol (C.9)

We define the super-metric on the super-algebra as the supertrace of the generators in
the fundamental representation

gun = StrXpy Xy, (C.10)

We can further define raising and lowering rules when the metric acts on the structure
constants

Cunpe = gusCip (C.11)

Cunp = —(=1)IENIXP) Oy py = —(=1)9EMIXN) e (C.12)

Cunp = —(=1)9E)9Xn)+9(Xn)g(XpP)+9(XP)g(Xnr) Op s (C.13)
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For a semi-simple super Lie algebra (|gasn| # 0 and |Ap,y,| # 0) we can define a contravariant
metric tensor through the relation

gupg"™N =63 (C.14)
The Killing form is defined as the supertrace of the generators in the adjoint represen-
tation

Kyy = (-1)9%P) 08, 0Ly = (=1)9C9XN) ey, (C.15)

(while on the (sub)Lie-algebra we define the metric K, = fhqfrp). Explicitly we have
Kun = hin — Foo Fl3 = Kum (C.16)
Kop = Fh o AfL — F%QAZEY = —Kgq (C.17)
Ko = Kam =0 (C.18)

The Killing form is proportional to the supermetric up to the second Casimir Cy(G) of the
supergroup, which is also called the dual Coxeter number

Kyn = —C2(G) gun- (C.19)

In the main text, we have computed the one-loop beta-functions in the background
field method. It turns out that the sums of one-loop diagrams with fixed external lines
are proportional to the Ricci tensor Ry of the supergroup. The super Ricci tensor of a
supergroup is defined as

1
Run(G) = — 7 fligf§p(-)"), (C-20)
and we immediately see that Ry;ny = —Ksn, in particular, we can write it as
Cy (G
Run(G) = 251 )gMN, (C.21)

C.2 Summary of our models

We would like to have a clear spacetime interpretation of the dual Coxeter number of a
supergroup. Let us consider a supergroup G with a Z4 automorphism, whose zero locus
we denote by H. The various RR backgrounds we discussed in the main text are realized
as G/H supercosets of this kind. The bosonic submanifold is in general AdS, x S?, where
the gauge group H = SO(1,p — 1) x SO(g) x SO(r), and the SO(r) factor corresponds to
the non-geometric isometries. We have the following cases

G Algebra Pqr FHsusy C2(G)
AdS, Osp(1/2) B(0[1) 200 2 -3
AdSs Osp(2|2) C(2) 202 4 -2
AdSy Osp(2]4) C(3) 402 8 —4
AdSg Fy F(4;3) 603 16 2
AdSs x St SU(2,2[2) A(2]4) 503 16 4
AdSy x §? PSU(1,1|2) A(2]2) 220 8 0
AdS3 x §3 PSU(1,1|2)2 A(22) ® A(2]2) 330 16 0
AdSs x S PSU(2,2|4) A(4)4) 550 32 0
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The superspace notations will be as follows: the letters {M, N, ...} refer to elements of the
supergroup G, while {I,J,...} take values in the gauge group H and finally {A, B,...}
refer to elements of the supercoset G/H. The lower case letters denote the bosonic and
fermionic components of the superspace indices, while #gs, is the number of real space-
time supercharges in the background. Then, we can rewrite the super Ricci tensor of the

supergroup ([C.20) making explicit the Z, grading?®

1 1
Rap(G) = =1 fipfpe(=) = 5 fhnSBi(=)", (C22)

In particular, its grading two part is

1 3 5 1.
Rap(G) = 7 (FS ) + Fi B ) = 5 Ficfi (C.23)

QL

C.3 Osp(2]2)

The Osp(2|2) supergroup corresponds to the superalgebra C(2). It has a bosonic subgroup
Sp(2) x SO(2) and four real fermionic generators transforming in the 4 & 4 of Sp(2). It
consists of the super matrices M satisfying MS*tHM = H, where

The superalgebra is obtained by the commutation relations m**H + Hm = 0, where we

parameterize
sl(2) la b sl(2)t e g
m = c d mst = fh (C.24)
f —a —c
h| so(2) —c —d| so(2)!

so that from the condition mS*H + Hm = 0 we find

sl(2) la b
c d
m =
—c a
—d b| so(2)

The Cartan basis for the Osp(2|2) superalgebra is given by the following supermatrices.
The bosonic generators are

10 01 00

0 -1 00 10 ~
H= , Et = , E = , H

01}’
-10

*5The Ricci tensor of the supercoset G/H is given Rap(G/H) = —% f5p fBo(—)C — fapfEi(—)", see [E]
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where (H, E¥) are the generators of sl(2) while H is the generator of SO(2). The fermionic

generators (Qq, Qs) are

01
1 00 1
Ql:ﬁ 00 ; Qi:ﬁ
01
10
1 00 1
Q2:E 01 Qi:ﬁ
00

Finally, the Osp(2|2) superalgebra is given by

BB - £98%,  [BYE]-H
[ﬁa Ei] = Oa [ﬁ’ Qa] = EaﬁQﬁa
[H7 Qa] = Qou [H7 Qd] = _Qéw

1 1 _

{Qa’Q,@} = 5 OcﬁEJr’ {Qd’QB} = 565{’@]3 )
[E+7 Qoz] = [E_7 Qd] =0, [E+7 Qd] = —06aQa;
We classify the generators according to their Z4 charge

Ho | Hi| H2| Hs

H.H| Q.| Ef| Qs

10
0

00
0-1

00
-10

[H,H] =0,
[H,Qa] = €45Qp

(C.25)

1 1 ~
{Qaa Qd} = 560464H + §€adHa

[E_7 Qa] - _50{de7

(C.26)

In the main text, we realize our AdS; background by quotienting with respect to the
grading zero subgroup, namely SO(1,1) x SO(2). The structure constants are

= 00 = 8,8, =0,
Frm = 206504 —6,00), fp, =0
Fm = 8005, Fg = 6405,
Fga:‘gga Fga:_‘sg

B _ 5 STE
Fﬁa = EQ,Y(S’YB, Ff[d = E&,?(S,yg
Al = 0ap0T, Asp = 70550

1 77 77 1

H — H — — ~ HA = IA{ = — P

Aaé_Aﬁa_ 25aﬁ, Aaﬁ Aﬁa 2%57
The metric on the supergroup is

Jaa = —Naa = daa, 9ij = 205,

,46,



where m,n ==+, i,j = H,}NI.

The OSp(1|2) supergroup corresponds to the superalgebra B(0|1). Its bosonic sub-
group is Sp(2) and it has two real fermionic generators transforming in the 2 of Sp(2).
It can be easily obtained by the one of the Osp(2]2) supergroup by simply dropping the
generators H and Qq, Qs.

C.4 Osp(2/4)

The supergroup Osp(2|4) corresponds to the superalgebra C'(3). Its bosonic subgroup is
Sp(4) x SO(2) and it has eight real fermionic generators transforming in the 4 ®4 of Sp(4).
We classify the generators according to their Z4 charge

Mo | Hi| Ho| Hs
(C.28)

J[ab]a ﬁ Qa P, Qda
where a = 0,...,3 and a, & are four-dimensional Majorana spinor indices. In the main text,

we realize our AdSy background by quotienting with respect to the grading zero subgroup,
namely SO(1,3) x SO(2). The structure constants are

il = %5};65}, Fine = = Fbela = M09 (C.29)
Pt = 5otemyedt) = 5 (medle o) + maadiesD — nacdlf6f) — madleol)

Fiu = —Fha = 500, Fih = —Ff = 305"
F[gb}a - _Frf[ab} = %(%b)ﬁm F[Eb}d = _Fg[ab} = %('Yab)ﬁd

F2 = 560, s

ap = (C7")ag; A%5=(C)s5
AL = —2(79)a(0) 5. Al = 2(v%)57(C)sp
A = (@ ™5 A = (@)

where C' is the charge conjugation matrix of SO(1,3). The supermetric is given by

Jab = Tab; 905 =2Cup (C.30)
Ilablled] = Malcldlp> 9 f = 2
C.5 SU(2,2/2)

The supergroup SU(2,2|2) corresponds to the superalgebra A(3|1). Its bosonic subgroup
is SU(2,2) x SO(3) x U(1) and it has sixteen real fermionic generators transforming in the
(4,2) @ (4,2). We classify the generators according to their Z4 charge

Ho Hi| Ho | Hs
(C.31)

J[ab]’ﬁa’ Quo| Pa, R| Qaar,
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where a = 0,...,4 are the coordinates on the AdSs, R is the translation generator on
St and o’ = 1,2,3 is the SO(3) vector index, while (o, &) are Majorana spinor indices of
SO(1,4) and (a’,&') are spinors of SO(3). In the main text, we realize our AdSs x S*
background by quotienting with respect to the grading zero subgroup.

Its structure constants are

il = %5([555]’ Foy =eav®s Ty = —Fisqa = Nap® (C.32)
i = 6{2771,] 09 = % (0] + naady o) = nacly 83 = mualesl))
Fitn = =500, P = 200" s
ngflR = _5@@’550” g = —%56l&'5ﬁd
F o) = —%(%b)ﬁaéﬁ'a/, F = ;(%b)ﬁ 5
Fy = =5 0w) e, Fy = ) a6
Aqegp = —1Car g (CY")aps Awsr = "Cap ()55
Adarspr = CasClug ALyan =CasCup
ASZ]'BE/ - zca'ﬁ'(CVGb)aB’ Agg}’ﬁﬁ’ = _%C&’B’(C'Yab)dﬁ
A gy = ~2C0ap(C ) Alargy = 2Cas(C')arp

where C,3 and C(I:v/ﬁ/ are the charge conjugation matrices respectively of SO(1,4) and

SO(3). The supermetric is

Gab = —MNab grr =1, (C.33)

!
9p = Copr 9 = Cu

C.6 AdS, x SP superalgebras

The AdS, x SP backgrounds are realized by the following supercosets

AdS, x §?  AdSs;x S®  AdSs x S°
PSU(1,1]2) PSU(1,1|2)2 PSU(2,2]4) (C.34)
SO(L,1)xSO(2) SO(1,2)xSO(3) SO(1,4)xS0(5)

We can treat the supergroups PSU(1,1[2), PSU(1,1[2)? and PSU(2,2|4) schematically
altogether, by collecting their generators according to their Z4 grading as follows

Ho Hy Ho Hs
(C.35)
J[ab]7 Ja’b/ an/ Paa Pa/ Qdd’7
where a = 0,...,p — 1 are the coordinates on the AdS,, ' = 1,...,p are the coordinates

along SP, while (o, &) are Weyl spinor indices of SO(1,p — 1) and (o/,&’) are spinors of
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SO(p). In the main text, we realize our AdS, x SP backgrounds by quotienting with respect
to the grading zero subgroup. The structure constants are

il = 15553] i = ——5[ o oy = i = (C.36)
f[[jz{ cd] 557712][55 ]} _ 1 (nbcé[eéf] + nadé[ O 1 _ 77@5555 _ nﬂggggﬁ)
Fta= 500 e F2, = t0)ad”
F = 50wl =~ ow) 8
= —50w) a8 F = 0o
Agrpy = —1Curp (CY")ap, AZ&'BE’ — _iC. /g/(CWG)dg
Argp = Cap(C'y argy, Ag’dﬁ@ = C5(C )5
At[jab]’ﬁﬁ’ - %Ca’ﬁ’(cwab)aﬁ’ Aglgfﬁﬁ’ = _%Cafﬁ'(CWab)dﬁ
Ay = 30O e AL = S Cas( Oy (CT)

where Cpg and C/, g are respectively the charge conjugation matrices of SO(1,p — 1) and
SO(p). The supermetric in the fundamental is

Gab = —Tab, 9a'ty = MNa'b’ s (C'38)
Joa = Cocdc;/d/a (039)

D. Non-critical supergravity in d dimensions

In this section we study d-dimensional supergravity with a cosmological constant. We
will show that there is an AdS;_; x S! solution with RR (d — 1)-form flux only when we
introduce space-filling sources, that can be interpreted as uncharged D;_i-branes. This
reproduces the results found in [[J] for the AdSs x S! case and gives the new solution
AdS3 x S1. In the next section we will then argue that, by including the first o/ corrections
to the non-critical supergravity equations, an AdSs x S' solution might be possible, even
without the space-filling sources.
The d-dimensional non-critical supergravity action in the string frame is

S = % /ddx V-G [_(auX)2 +e (R+4(9u9) +A) — 2Nfei¢] ’ (D-1)

where x is the RR scalar, dual to the (d — 1)-form flux, the cosmological constant is

10—-d

/ )

A=

- (D.2)

and the last term is the contribution of Ny pairs of space-filling uncharged sources. In IE|

this term was interpreted as arising from Ny pairs of branes and anti-branes. We make
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an ansatz for a solution of the kind AdSy_; x S' with constant dilaton. The equations of
motion for the metric and the dilaton then reduce to

1
D-2
0=R+A—Nge,

R, = G <2Nfe¢ - A) +€228,X0, X, (D.3)

Let us parameterize the dual of the RR (d — 1)-form flux as a one-form flux 9, x, whose
only nonzero leg is along the S! as in the previous section. In particular, x ~ N.6, where
0 is the coordinate on the circle, so that dgx ~ N.. Note that component of the Ricci
curvature along the circle vanishes Rgg = 0. Then we find the following solution for the
scalar curvature and the string coupling

10 —-d 10 —d

R=- (d—1), gs =e? = Ny, (D.4)
d d
and the components of the Ricci curvature along the AdSg_; are R;; = — mT—chij. Recalling
that R;; = —}%;QGM and Ggg = R% we can read off the radii
AdS
d(d —2) 10 —d N2
2 2

It is easy to see that, without space-filling sources, namely if we set Ny = 0, then there is
no solution to the supergravity equations (D.J). In the case d = 6 we recover the AdSs x S!
solution of [Ig]. Moreover, we find the new solution

4 3 N2
_a/’ R2 /

A ! 2 6= LA\
ng XS, RAdS 3 g QNJ%Oé

(D.6)
It would be interesting to repeat the analysis of [IJ] for this last case, to understand its
relation to the four-dimensional type II linear dilaton background.

D.1 Higher curvature corrections

We have just seen above that there is no AdSs x S solution to the six-dimensional non-
critical supergravity equations, unless we include space-filling sources. We will now argue
that, when we include the first o/ corrections to the supergravity equations, there might
be a solution without the space-filling sources. At the end of the section, we will comment
about the validity of our argument.

We use the methods of [i2] and [B1]. We make the ansatz for a solution of non-critical
supergravity of the form AdSs x S with constant dilaton g5 = e® and constant RR five-
form flux F5. We are not adding any space-filling brane. Let us denote by Rag4s, Rg the
radii of AdS and S' respectively and parameterize the dual of the RR five-form flux as a
one form flux d,x, whose only nonzero leg is along the S1 as in the previous section, in
particular x ~ N 0. If we plug these ansatze in the ordinary supergravity action (D-1]), we
find the leading order terms

) 20 N2
SO = Vgs QRidSRS <—R2 + A - (gRQ) > ’ (D?)
AdS S
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where A = (10 — d)/a’. Note that all the components of the Riemann tensor along the
circle direction vanish, so that we do not have a term proportional to R;Q, which would
come from the ordinary Einstein-Hilbert action.

Let us address now the first o corrections to the supergravity action, which are ba-
sically of three kinds. The curvature squared terms of the kind RinO,RiV,RQ are all
proportional to R;ﬁs. The fourth power of the RR field strength

v gsN¢ 4
(9" 0uxvx)? ~ (T)’ (D.8)
S
while the only mixed coupling between the RR field strength and the curvatures is
(gsN. 0)2
R(g" 0ux0uX) ~ w525 - (D.9)
' RRasBs
Collecting all the terms we find the first o/ corrections to the action
- 2 (93N6)2 (gch)4
S; = Vg 2R34sRs ( + A + B , (D.10)
Bt

where v, A, B are real coefficients.
The goal now is to vary the action Sy + S1 with respect to Raqgs, Rs,gs and look for
a real positive solution for some values of the coefficients A, B,~y. The three variations of

the action read
1 /s\2
I _4 2 2 — 2
55 (5) (10a+80+29) = o2
0, (D.11)

—20s%a + 4s%a® + gsa® + vs* — Agsa — 3Bg*a>
—60as? + 20a%s® — 5a%sg + vs> 4+ 3Agas + 5Ba’g* =

where
— P2 — P2 — 2
a’:RAdS’ S:Rs, g = (gsN) .

One can first check that if A, B = 0 there is no solution to the equations of motion. This
is the result of [f1] that, if we include only the curvature squared terms and not the RR
couplings, there is still no AdSs x S solution.

It turns out that there is a solution with nonvanishing coefficients ~, A, B, for real
positive radii squared and string coupling, namely

g=1,
a

s = 10a—5)" (D.12)

) n 1 [/ v—25
6= =4+t —=
2 2V 16B—-1’
and two choices of coeflicients, related by analytic continuation. The first is

1
B — 25 D.13
> 15 1> (D.13)
1

A:g—a\/(lﬁB—l)(fy—%). (D.14)
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The second 1is

B < {5 7<%, (D.15)
5 1
A=o+ 5\/(163 —1)(y — 25). (D.16)

Note that we always have a > 5/2 so that s > 0 in (D.12).

We conclude that, even if AdSs x S! is not a solution to the one-loop beta-function
equations for Weyl invariance, when we consider all the o/ corrections to the next order,
there might be a solution. This fact points towards the possibility of having a two loop
conformal invariant non-critical superstring on AdSs x S'. However, we have not actually
proven that this choice of the coefficients solve the full supergravity equation. To show
this, one would have to check that this solution satisfies also the usual gravity constraints
(namely the vanishing of the stress tensor), which must be taken into account if we hon-
estly consider the supergravity equations of motion and not just their reduction ([D.11).
Additionally, the coefficients A, B, and v computed exactly using string theory may not
fall withing the specified range. Moreover, the non-critical supergravity does not provide
a consistent approximation to the type Il non-critical superstring, as we pointed out in
section f.1l This conjectured non-critical superstring would be dual to a four-dimensional
N = 2 superconformal field theory. Indeed, the supersymmetries and the global symmetries
match on the two sides.
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